958 resultados para 290601 Chemical Engineering Design
Resumo:
By understanding how everyday devices work, individuals can – with the help of a growing online community – enjoy extending the life of products and drive socially responsible design.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
The mixing performance of three passive milli-scale reactors with different geometries was investigated at different Reynolds numbers. The effects of design and operating characteristics such as mixing channel shape and volume flow rate were investigated. The main objective of this work was to demonstrate a process design method that uses on Computational Fluid Dynamics (CFD) for modeling and Additive Manufacturing (AM) technology for manufacture. The reactors were designed and simulated using SolidWorks and Fluent 15.0 software, respectively. Manufacturing of the devices was performed with an EOS M-series AM system. Step response experiments with distilled Millipore water and sodium hydroxide solution provided time-dependent concentration profiles. Villermaux-Dushman reaction experiments were also conducted for additional verification of CFD results and for mixing efficiency evaluation of the different geometries. Time-dependent concentration data and reaction evaluation showed that the performance of the AM-manufactured reactors matched the CFD results reasonably well. The proposed design method allows the implementation of new and innovative solutions, especially in the process design phase, for industrial scale reactor technologies. In addition, rapid implementation is another advantage due to the virtual flow design and due to the fast manufacturing which uses the same geometric file formats.
Resumo:
The purification of B-phycoerythrin from a concentrated extract of disrupted Porphyridium cruentum cells was carried out using a new vortex flow reactor design for protein purification. The reactor behaved as an expanded bed in the laminar vortices flow regime where the Streamline DEAE resin was expanded by the axial flow and stabilized by the vortex flow. After the broth culture was centrifuged and resuspended in the adsorption buffer, the concentrated extract of disrupted cells was directly loaded into the vortex flow reactor. The purification of B-phycoerythrin was carried out in two steps: adsorption in the expanded bed and elution from the settled bed. 142.0 mg of B-phycoerythrin was eluted representing a total recovery yield of 86.6%. Prior to B-phycoerythrin purification, the protein adsorption of the vortex flow reactor was characterized through hydrodynamic studies and a dynamic capacity measurement using a standard protein.
Resumo:
The stone masonry walls are present in many buildings and historical monuments, with undeniable asset value, but also in old buildings housing both in Portugal and in Europe. Most of these buildings in masonry are in certain cases in a high state of degradation needing urgent intervention. This requires the identification of deficiencies and the application of appropriate intervention techniques. One of the possible techniques for structural consolidation works of stone masonry walls is the injection of fluid mortars currently called grouts. The choice of grouts is very important with regard in particular to their chemical and physical properties. In this study, carried out under the Master of Chemical Engineering, two types of lime-based grouts were used, in order to evaluate and compare their chemical resistance due to the crystallization of soluble salts. One of the grouts is a pre-dosed blend commercially available, Mape-Antique I from company Mapei (CA), and the second grout is a mixture prepared in the laboratory (LB), comprising metakaolin, cement, hydrated lime, water and superplasticizer. With the purpose of evaluating the action of sulphates on these grouts, a series of samples underwent several wetting-drying cycles using two different temperatures, 20 °C and 50 °C. During the experiment it was determined the change of weight and compressive strength in the analyzed grouts, as well as the sulphate ion concentration and pH of the solution in which the samples were dipped. The commercial grout (CA) apparently has a greater chemical resistance to sulphates. However grout LB showed to have positive results in some parameters.
Resumo:
Safe operation of unmanned aerial vehicles (UAVs) over populated areas requires reducing the risk posed by a UAV if it crashed during its operation. We considered several types of UAV risk-based path planning problems and developed techniques for estimating the risk to third parties on the ground. The path planning problem requires making trade-offs between risk and flight time. Four optimization approaches for solving the problem were tested; a network-based approach that used a greedy algorithm to improve the original solution generated the best solutions with the least computational effort. Additionally, an approach for solving a combined design and path planning problems was developed and tested. This approach was extended to solve robust risk-based path planning problem in which uncertainty about wind conditions would affect the risk posed by a UAV.
Resumo:
Meso-/microporous zeolites combine the charactersitics of well-defined micropores of zeolite with efficient mass transfer consequences of mesopores to increase the efficiency of the catalysts in reactions involving bulky molecules. Different methods such as demetallation and templating have been explored for the synthesis of meso-/microporous zeolites. However, they all have limitations in production of meso-/microporous zeolites with tunable textural and catalytic properties using few synthesis steps. To address this challenge, a simple one-step dual template synthesis approach has been developed in this work to engineer lamellar meso-/microporous zeolites structures with tunable textural and catalytic properties. First, one-step dual template synthesis of meso-/microporous mordenite framework inverted (MFI) zeolite structures was investigated. Tetrapropyl ammonium hydroxide (TPAOH) and diquaternary ammonium surfactant ([C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13]Br2, C22-6-6) were used as templates to produce micropores and mesopores, respectively. The variation in concentration ratios of dual templates and hydrothermal synthesis conditions resulted in production of multi-lamellar MFI and the hybrid lamellar-bulk MFI (HLBM) zeolite structures. The relationship between the morphology, porosity, acidity, and catalytic properties of these catalysts was systematically studied. Then, the validity of the proposed synthesis approach for production of other types of zeolites composites was examined by creating a meso-/microporous bulk polymorph A (BEA)-lamellar MFI (BBLM) composite. The resulted composite samples showed higher catalytic stability compared to their single component zeolites. The studies demonstrated the high potential of the one-step dual template synthesis procedure for engineering the textural and catalytic properties of the synthesized zeolites.
Resumo:
The remediation of paracetamol (PA), an emerging contaminant frequently found in wastewater treatment plants, has been studied in the low concentration range (0.3–10 mg L−1) using as adsorbent a biomass-derived activated carbon. PA uptake of up to 100 mg g−1 over the activated carbon has been obtained, with the adsorption isotherms being fairly explained by the Langmuir model. The application of Reichemberg and the Vermeulen equations to the batch kinetics experiments allowed estimating homogeneous and heterogeneous diffusion coefficients, reflecting the dependence of diffusion with the surface coverage of PA. A series of rapid small-scale column tests were carried out to determine the breakthrough curves under different operational conditions (temperature, PA concentration, flow rate, bed length). The suitability of the proposed adsorbent for the remediation of PA in fixed-bed adsorption was proven by the high PA adsorption capacity along with the fast adsorption and the reduced height of the mass transfer zone of the columns. We have demonstrated that, thanks to the use of the heterogeneous diffusion coefficient, the proposed mathematical approach for the numerical solution to the mass balance of the column provides a reliable description of the breakthrough profiles and the design parameters, being much more accurate than models based in the classical linear driving force.
Resumo:
By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.
Resumo:
“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and with varying fluorescent quantum yields. I synthesized a highly water soluble BOIDPY-based turn-on fluorescent probe for endogenous nitric oxide. I also synthesized a series of cell membrane permeable near infrared (NIR) pH activatable fluorescent probes for lysosomal pH sensing. Fluorescent dyes are molecular tools for designing fluorescent bio imaging probes. This prompted me to design and synthesize a hybrid fluorescent dye with a functionalizable chlorine atom and tested the chlorine re-activity for fluorescent probe design. Carbohydrate and protein interactions are key for many biological processes, such as viral and bacterial infections, cell recognition and adhesion, and immune response. Among several analytical techniques aimed to study these interactions, electrochemical bio sensing is more efficient due to its low cost, ease of operation, and possibility for miniaturization. During my Ph.D., I synthesized mannose bearing aniline molecule which is successfully tested as electrochemical bio sensor. A Ferrocene-mannose conjugate with an anchoring group is synthesized, which can be used as a potential electrochemical biosensor.
Resumo:
Traditional engineering design methods are based on Simon's (1969) use of the concept function, and as such collectively suffer from both theoretical and practical shortcomings. Researchers in the field of affordance-based design have borrowed from ecological psychology in an attempt to address the blind spots of function-based design, developing alternative ontologies and design processes. This dissertation presents function and affordance theory as both compatible and complimentary. We first present a hybrid approach to design for technology change, followed by a reconciliation and integration of function and affordance ontologies for use in design. We explore the integration of a standard function-based design method with an affordance-based design method, and demonstrate how affordance theory can guide the early application of function-based design. Finally, we discuss the practical and philosophical ramifications of embracing affordance theory's roots in ecology and ecological psychology, and explore the insights and opportunities made possible by an ecological approach to engineering design. The primary contribution of this research is the development of an integrated ontology for describing and designing technological systems using both function- and affordance-based methods.
Resumo:
Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode-Electrolyte-Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V-I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.
Resumo:
The kinetics of metal uptake by gel and dry calcium alginate beads was analysed using solutions of copper or lead ions. Gel beads sorbed metal ions faster than the dry ones and larger diffusivities of metal ions were calculated for gel beads: approximately 10−4 cm2/min vs. 10−6 cm2/min for dry beads. In accordance, scanning electron microscopy and nitrogen adsorption data revealed a low porosity of dry alginate particles. However, dry beads showed higher sorption capacities and a mechanical stability more suitable for large-scale use. Two sorption models were fitted to the kinetic results: the Lagergren pseudo-first order and the Ho and McKay pseudo-second order equations. The former was found to be the most adequate to model metal uptake by dry alginate beads and kinetic constants in the orders of 10−3 and 10−2 min−1 were obtained for lead solutions with concentrations up to 100 g/m3. The pseudo-first order model was also found to be valid to describe biosorbent operation with a real wastewater indicating that it can be used to design processes of metal sorption with alginate-based materials.