855 resultados para 280212 Neural Networks, Genetic Alogrithms and Fuzzy Logic
Resumo:
In this paper we present the initial results using an artificial neural network to predict the onset of Parkinson's Disease tremors in a human subject. Data for the network was obtained from implanted deep brain electrodes. A tuned artificial neural network was shown to be able to identify the pattern of the onset tremor from these real time recordings.
Resumo:
One of the essential needs to implement a successful e-Government web application is security. Web application firewalls (WAF) are the most important tool to secure web applications against the increasing number of web application attacks nowadays. WAFs work in different modes depending on the web traffic filtering approach used, such as positive security mode, negative security mode, session-based mode, or mixed modes. The proposed WAF, which is called (HiWAF), is a web application firewall that works in three modes: positive, negative and session based security modes. The new approach that distinguishes this WAF among other WAFs is that it utilizes the concepts of Artificial Intelligence (AI) instead of regular expressions or other traditional pattern matching techniques as its filtering engine. Both artificial neural networks and fuzzy logic concepts will be used to implement a hybrid intelligent web application firewall that works in three security modes.
Resumo:
In this paper we consider the possibility of using an artificial neural network to accurately identify the onset of Parkinson’s Disease tremors in human subjects. Data for the network is obtained by means of deep brain implantation in the human brain. Results presented have been obtained from a practical study (i.e. real not simulated data) but should be regarded as initial trials to be discussed further. It can be seen that a tuned artificial neural network can act as an extremely effective predictor in these circumstances.
Resumo:
This work analyzes the use of linear discriminant models, multi-layer perceptron neural networks and wavelet networks for corporate financial distress prediction. Although simple and easy to interpret, linear models require statistical assumptions that may be unrealistic. Neural networks are able to discriminate patterns that are not linearly separable, but the large number of parameters involved in a neural model often causes generalization problems. Wavelet networks are classification models that implement nonlinear discriminant surfaces as the superposition of dilated and translated versions of a single "mother wavelet" function. In this paper, an algorithm is proposed to select dilation and translation parameters that yield a wavelet network classifier with good parsimony characteristics. The models are compared in a case study involving failed and continuing British firms in the period 1997-2000. Problems associated with over-parameterized neural networks are illustrated and the Optimal Brain Damage pruning technique is employed to obtain a parsimonious neural model. The results, supported by a re-sampling study, show that both neural and wavelet networks may be a valid alternative to classical linear discriminant models.
Resumo:
Dynamic neural networks (DNNs), which are also known as recurrent neural networks, are often used for nonlinear system identification. The main contribution of this letter is the introduction of an efficient parameterization of a class of DNNs. Having to adjust less parameters simplifies the training problem and leads to more parsimonious models. The parameterization is based on approximation theory dealing with the ability of a class of DNNs to approximate finite trajectories of nonautonomous systems. The use of the proposed parameterization is illustrated through a numerical example, using data from a nonlinear model of a magnetic levitation system.
Resumo:
This special section contains papers addressing various aspects associated with the issue Of Cultured neural networks. These are networks, that are formed through the monitored growth of biological neural tissue. In keeping with the aims of the International Journal of Adaptive Control and Signal Processing, the key focus of these papers is to took at particular aspects of signal processing in terms of both stimulating such a network and in assigning intent to signals collected as network outputs. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper, we propose to study a class of neural networks with recent-history distributed delays. A sufficient condition is derived for the global exponential periodicity of the proposed neural networks, which has the advantage that it assumes neither the differentiability nor monotonicity of the activation function of each neuron nor the symmetry of the feedback matrix or delayed feedback matrix. Our criterion is shown to be valid by applying it to an illustrative system. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The possibility of using a radial basis function neural network (RBFNN) to accurately recognise and predict the onset of Parkinson’s disease tremors in human subjects is discussed in this paper. The data for training the RBFNN are obtained by means of deep brain electrodes implanted in a Parkinson disease patient’s brain. The effectiveness of a RBFNN is initially demonstrated by a real case study.
Resumo:
This article looks at the use of cultured neural networks as the decision-making mechanism of a control system. In this case biological neurons are grown and trained to act as an artificial intelligence engine. Such research has immediate medical implications as well as enormous potential in computing and robotics. An experimental system involving closed-loop control of a mobile robot by a culture of neurons has been successfully created and is described here. This article gives a brief overview of the problem area and ongoing research. Questions are asked as to where this will lead in the future.
Resumo:
The problem of identification of a nonlinear dynamic system is considered. A two-layer neural network is used for the solution of the problem. Systems disturbed with unmeasurable noise are considered, although it is known that the disturbance is a random piecewise polynomial process. Absorption polynomials and nonquadratic loss functions are used to reduce the effect of this disturbance on the estimates of the optimal memory of the neural-network model.