866 resultados para 260302 Exploration Geochemistry
Resumo:
The development petroleum geology has made people from studying and studying and predicting in statically and respectively the pool-forming conditions of an area such as oil source bed, reservoir, overlying formation, migration, trap and preservation, etc. to regarding these conditions as well as roles of generation, reservation and accumulation as an integrated dynamic evolution development system to do study .Meanwhile apply various simulating means to try to predict from quantitative angle. Undoubtedly, the solution of these questions will accumulate exploration process, cut down exploration cost and obtain remarkable economic and social benefits. This paper which take sedimentology ,structural geology and petroleum geology as guides and take petroleum system theory as nucleus and carry out study thinking of beginning with static factor and integration of point and face as well as regarding dynamic state factor as factor and apply study methods of integration of geology, Lab research and numerical modeling proceed integrated dissect and systematic analysis to GuNan-SanHeCun depression. Also apply methods of integration of sequence stratigraphy, biostratigraphy, petrostratigraphy and seismic data to found the time-contour stratigraphic framework and reveal time-space distribution of depositional system and meantime clarify oil-source bed, reservoir and overlying distribution regular patterns. Also use basin analysis means to study precisely the depositional history, packed sequences and evolution. Meanwhile analyze systematically and totally the fracture sequence and fault quality and fault feature, study the structural form, activity JiCi and time-space juxtaposion as well as roles of fault in migration and accumulation of oil and gas of different rank and different quality fault. Simultaneously, utilize seismic, log, analysis testing data and reservoir geology theory to do systematic study and prediction to GuNan-SanHeCun reservoir, study the reservoir types macroscopic distribution and major controlling factors, reservoir rock, filler and porosity structural features as well as distribution of reservoir physical property in 3D space and do comprehensive study and prediction to major controlling and influential factors of reservoir. Furthermore, develop deepingly organic geochemistry comprehensive study, emphasis on two overlaps of oil source rock (ESI, ES3) organic geochemistry features, including types, maturity and spatial variations of organic matter to predict their source potential .Also apply biological marks to proceed oil-to-source correlation ,thereby establish bases for distribution of petroleum system. This study recover the oil generation history of oil source rocks, evaluate source and hydrocarbon discharge potential ,infer pool-forming stages and point out the accumulation direction as well as discover the forming relations of mature oil-source rock and oil reservoir and develop research to study dynamic features of petroleum system. Meanwhile use systematic view, integrate every feature and role of pool forming and the evolution history and pool-forming history, thereby lead people from static conditions such as oil source bed, reservoir, overlying formation, migration, trap and preservation to dynamically analyzing pool-forming process. Also divide GuNan-SanHeCun depression into two second petroleum system, firstly propose to divide second petroleum system according to fluid tress, structural axis and larger faults of cutting depression, and divide lower part of petroleum system into five secondary systems. Meanwhile establish layer analysis and quantitative prediction model of petroleum model, and do quantitative prediction to secondary petroleum system.
Resumo:
This paper builds the model of oil accumulation and achieves the prediction of exploration goal. It uses multiple subject means, the ways of synthetic research and the viewpoint of analyzing genesis, with the academic guidance of sedimentology, structural geology, petroleum geology and geochemistry, the basis of strata sequence frame and structural frame, the frame of "four history" - the burying history, the structural history, the filling history and the evolving history of oil, the masterstroke of hydrocarbon's generation, migration and accumulation, the aim of revealing the genetic relation between mature source rock and oil reservoir in space and time. Some achievements and viewpoints in this study are following. 1. It is proposed that the structural evolution in this area had many periods, and the structural movement of the Xiazijie group telophase formed the structural pattern for the first time. 2. The character of strata sequence in this area is divided by the character of episodic cycle firstly. The study of dividing the facies of single well and the facies of well tie is based on the data of single well. The character of sedimentary facies is con-structed initially. 3. It is believed that Jiamuhe group is the main source rock, which can supply considerable oil and gas resources for the first time. Some criterions of source rock such as the type ,the abundance in Jiamuhe group are analysed. Using the thermal history of source rock, we drawn a conclusion that the original type of source rock in Jiamuhe group is II_1-III, and the abundance achived the level of good source rock, and this set of source rock had contributed to this area. 4. The reservoir strata in this area are assessed and analysed with the reservoir evaluation. There are multi-type reservoirs, such as volcanic lava facies, sedimentary clast facies, continental belch facies. The physical property in reservoir strata is characterized by low porosity and low permeability. The study of diagenetic stage show that the diageneses in Jiamuhe group is A-Bsubage, and the reservoir room is mainly secondary corroded hollow and cleft. 5. The synthetic research on oil system in Jiamuhe group is made for the first time. The type of petroleum system is divided , and we consider that the petroleum system of Jiamuhe group is at the reliable rank. There are two critical time in oil accumulation through studying the critical time of oil accumulation : the early generation of hydrocarbon is oil, and the later is gas. 6. The mechanism of accumulation is analysed. We consider that the accu-mulation of oil in this area has many periods, and the early generated hydrocarbon is expeled by the later , and formed the character of zonal distribution in planar. 7. A bran-new model of oil and gas is proposed. Beneficial enrichment area of oil and gas is analyzed, which can be divided into three sections: Section I can be divided into two sections: I_1 and I_2. The lower subgroup of Jiamuhe is covered by the triassic layer of I_1 section. Fault zone and near the foot wall of fault are charactered with thick phase belt. Then the cover capability in this area is relatively poor, oil can migrate into triassic layer by vertical or lateral migration , and forms I_1 Kelamayi triassic oil pool consequently. The lower subgroup of Jiamuhe is covered by the triassic layer of I_2 section ,which is charactered with thin phase belt. Then the cover capability in this area is relatively good, and forms I_1 Kelamayi triassic oil pool consequently. Section II can be divided into two sections: II_1-I_(I~2). The cover of Jiamuhe group in section II_1 is the low resistivity segment in Wuerhe group, which has thin lithology and poor porosity and permeability. Oil and gas in Jiamuhe group can be covered to form beneficial accumulation area. There are some wells in this area, such as Ke 007 well, 561 well. The thick phase belt layer of Wuerhe high resistivity segment in section II_2 has unconformable relation with Jiamuhe group. The cover ability of the high resistivity segment is poor, petroleum in Jiamuhe can migrate into Wuerhe layer vertically. This area is the beneficial area for accumulating petroleum in Wuerhe layer. there are some wells in this area, such as Ke 75 well, Ke 76 well, Ke 77 well, Ke 78 well, Ke 79 well. Section III can also be divided into two sections: III_1 and III_2. Wuerhe group in section III_1 has unconformable relation with Jiamuhe group. There is thick lithology and poor cover in Wuerhe group, but the strata sequence evolution character of upper subgroup in Jiamuhe group has determined that it has lateral and vertical cover ability. thus, this area is petroleum abundant belt of jiamuhe group, which has the trap. Section III_2 is an area controled by wedgeout of Fengcheng group, Fengcheng group in this area has quite thick lithology so that It has beneficial resevoir phase belt. It can accumulate oil in itself or accept some oil in Jiamuhe group. Jiamuhe group has some oil accumulation condition in this area. Thus, section III_2 is jiamuhe-Fengcheng multiple petroleum accumulation belt, such as Ke 80 well. 8. The goal of exploration is suggested: Depositional trap or combination trap is the important aspect in later exploration. Both types of traps are the goal of the next drilling: Fault block trap in the east of 576 well and the NO. 2 fault block trap in the north of Ke 102 well It is suggested that we should study the law of oil and gas in Jiamuhe group and enhance the study of combination in forming reservoir and trap scale. We do some lithology forecast and reservoir diatropic forecast in order to know the area of oil and gas.
Resumo:
Natural gas pays more important role in the society as clean fuel. Natural gas exploration has been enhanced in recent years in many countries. It also has prospective future in our country through "85" and "95" national research. Many big size gas fields have been discovered in different formations in different basins such as lower and upper Paleozoic in Erdos basin, Tertiary system in Kuche depression in Tarim basin, Triassic system in east of Sichuan basin. Because gas bearing basins had been experienced multiple tectogenesis. The characteristics of natural gases usually in one gas field are that they have multiple source rocks and are multiple maturities and formed in different ages. There has most difficult to research on the gas-rock correlation and mechanism of gas formation. Develop advanced techniques and methods and apply them to solve above problems is necessary. The research is focused on the critical techniques of geochemistry and physical simulation of gas-rock correlation and gas formation. The lists in the following are conclusions through research and lots of experiments. I 8 advanced techniques have been developed or improved about gas-rock correlation and gas migration, accumulation and formation. A series of geochemistry techniques has been developed about analyzing inclusion enclave. They are analyzing gas and liquid composition and biomarker and on-line individual carbon isotope composition in inclusion enclave. These techniques combing the inclusion homogeneous temperature can be applied to study on gas-rock correlation directly and gas migration, filling and formation ages. Technique of on-line determination individual gas carbon isotope composition in kerogen and bitumen thermal pyrolysis is developed. It is applied to determine the source of natural is kerogen thermal degradation or oil pyrolysis. Method of on-line determination individual gas carbon isotope composition in rock thermal simulation has being improved. Based on the "95"former research, on-line determination individual gas carbon isotope composition in different type of maceral and rocks thermal pyrolys is has been determined. The conclusion is that carbon isotope composition of benzene and toluene in homogenous texture kerogen thermal degradation is almost same at different maturity. By comparison, that in mixture type kerogen thermal pyrolysis jumps from step to step with the changes of maturity. This conclusion is a good proof of gas-rock dynamic correlation. 3. Biomarker of rock can be determined directly through research. It solves the problems such as long period preparing sample, light composition losing and sample contamination etc. It can be applied to research the character of source rock and mechanism of source rock expulsion and the path of hydrocarbon migration etc. 4. The process of hydrocarbon dynamic generation in source rock can be seen at every stage applying locating observation and thermal simulation of ESEM. The mechanism of hydrocarbon generation and expulsion in source rock is discussed according to the experiments. This technique is advanced in the world. 5. A sample injection system whose character is higher vacuum, lower leaks and lower blank has been built up to analyze inert gas. He,Ar,Kr and Xe can be determined continuously on one instrument and one injection. This is advanced in domestic. 7. Quality and quantity analysis of benzene ring compounds and phenolic compounds and determination of organic acid and aqueous gas analysis are applied to research the relationship between compounds in formation water and gas formation. This is another new idea to study the gas-rock correlation and gas formation. 8. Inclusion analysis data can be used to calculate the Paleo-fluid density, Paleo-geothermal gradient and Paleo-geopressure gradient and then to calculate the Paleo-fluid potential. It's also a new method to research the direction of hydrocarbon migration and accumulation. 9. Equipment of natural gas formation simulation is produced during the research to probe how the physical properties of rock affect the gas migration and accumulation and what efficiency of gas migrate and factors of gas formation and the models of different type of migration are. II study is focused on that if the source rocks of lower Paleozoic generated hydrocarbon and what the source rocks of weathered formation gas pool and the mechanism of gas formation are though many advanced techniques application. There are four conclusions. 1.The maturity of Majiagou formation source rocks is higher in south than that in north. There also have parts of the higher maturity in middle and east. Anomalous thermal pays important role in big size field formation in middle of basin. 2. The amount of gas generation in high-over maturity source rocks in lower Paleozoic is lager than that of most absorption of source rocks. Lower Paleozoic source rocks are effective source rocks. Universal bitumen exists in Ordovician source rocks to prove that Ordovician source rocks had generated hydrocarbon. Bitumen has some attribution to the middle gas pool formation. 3. Comprehensive gas-rock correlation says that natural gases of north, west, south of middle gas field of basin mainly come from lower Paleozoic source rocks. The attribution ratio of lower Paleozoic source rocks is 60%-70%. Natural gases of other areas mainly come from upper Paleozoic. The attribution ratio of upper Paleozoic source rocks is 70%. 4. Paleozoic gases migration phase of Erdos basin are also interesting. The relative abundance of gasoline aromatic is quite low especially toluene that of which is divided by that of methyl-cyclohexane is less than 0.2 in upper Paleozoic gas pool. The migration phase of upper Paleozoic gas may be aqueous phase. By comparison, the relative abundance of gasoline aromatic is higher in lower Paleozoic gas. The distribution character of gasoline gas is similar with that in source rock thermal simulation. The migration phase of it may be free phase. IH Comprehensive gas-rock correlation is also processed in Kuche depression Tarim basin. The mechanism of gas formation is probed and the gas formation model has been built up. Four conclusions list below. 1. Gases in Kuche depression come from Triassic-Jurassic coal-measure source rocks. They are high-over maturity. Comparatively, the highest maturity area is Kelasu, next is Dabei area, Yinan area. 2. Kerogen thermal degradation is main reason of the dry gas in Kuche depression. Small part of dry gas comes from oil pyrolysis. VI 3.The K12 natural gas lays out some of hydro-gas character. Oil dissolved in the gas. Hydro-gas is also a factor making the gas drier and carbon isotope composition heavier. 4. The mechanism and genesis of KL2 gas pool list as below. Overpressure has being existed in Triassic-Jurassic source rocks since Keche period. Natural gases were expulsed by episode style from overpressure source rocks. Hetero-face was main migration style of gas, oil and water at that time. The fluids transferred the pressure of source rocks when they migrated and then separated when they got in reservoir. After that, natural gas migrated up and accumulated and formed with the techno-genesis. Tectonic extrusion made the natural gas overpressure continuously. When the pressure was up to the critical pressure, the C6-C7 composition in natural gas changed. The results were that relative abundance of alkane and aromatic decreased while cycloalkane and isoparaffin increased. There was lots of natural gas filling during every tectonic. The main factors of overpressure of natural gas were tectonic extrusion and fluid transferring pressure of source rocks. Well preservation was also important in the KL2 gas pool formation. The reserves of gas can satisfy the need of pipeline where is from west to east. IV A good idea of natural gas migration and accumulation modeling whose apparent character is real core and formation condition is suggested to model the physical process of gas formation. Following is the modeling results. 1. Modeling results prove that the gas accumulation rule under cap layer and gas fraction on migration path. 2. Natural gas migration as free phase is difficult in dense rock. 3. Natural gases accumulated easily in good physical properties reservoirs where are under the plugging layer. Under the condition of that permeability of rock is more than 1 * 10~(-3)μm~(-1), the more better the physical properties and the more bigger pore of rock, the more easier the gas accumulation in there. On the contrary, natural gas canonly migrate further to accumulate in good physical properties of rock. 4. Natural gas migrate up is different from that down. Under the same situation, the amount of gas migration up is lager than that of gas migration down and the distance of migration up is 3 times as that of migration down. 5. After gas leaks from dense confining layer, the ability of its dynamic plug-back decreased apparently. Gas lost from these arils easily. These confining layer can confine again only after geology condition changes. 6. Water-wetted and capillary-blocking rocks can't block water but gases generally. The result is that water can migrate continuously through blocking rocks but the gases stay under the blocking rocks then form in there. The experiments have proved the formation model of deep basin gas.
Resumo:
With the development of petroleum exploration, subtle reservoir has become the main exploration object in Dongying Depression, which requires some new technologies and methods to further reveal the geological characteristics in step with the mature exploration stage. In this paper, on the references to the studies of petroleum system and multiple oil-gas accumulation belt with flexible maneuverability, and the application of systematic theory, the concept of reservoir assemblage is initially defined as "the association of active source rock(s) and hydrocarbon reservoir(s) that are genetically related, with the bridge of pathway system in an oil and gas bearing basin". Compared with the theories of petroleum system and multiple oil-gas accumulation belts, it emphasizes on the processes of petroleum migration and accumulation and the correlation among active source rock, trapped hydrocarbon and migration pathway, and has been confirmed to be more suitably applied to high maturely explored basin. In the first study of this paper, sequence stratigraphy and subtle analytical technology of source rock have been employed to find that two categories of source rock with their characteristic types of organic matter and substantial states occurred in Dongying Depression. The first category, consisting of the oil shales within the third-order sequences of lacustrine expanding system tracts in the upper interval of the fourth Member of Shahejie Formation and both in the middle and lower intervals of the third Member of Shahejie Formation, is featured with the highest abundance of total organic matter (TOC) and the strongest abilities of hydrocarbon generation and expulsion, which is classified into the standard of good hydrocarbon source rock. Exploration assessment confirmed that about 70-80% of hydrocarbon in Dongying Depression came from this set of source rock for which the low sedimentary rate and strong oxygen-free environment would play the key role during its generation. The second category, composed of organic matter of dark mudstone in high stand system tracts in the upper and middle intervals of the third Member of Shahejie Formation, has been characterized by low content of total organic matter which mostly dispersedly distributes, and formed in the pre-delta to delta front environments. In classification, it belongs to the ordinary standard of source rocks. In the second research part, through the studies of high frequency sequence stratigraphy, fault geometry and active history combining with geochemistry of fluid inclusion and nitrogen compound and simulation test of hydrocarbon migration and accumulation, the faults have been thought to be the principal conduits, and the sandy bodies and unconformities might played the complementary pathways for hydrocarbon migration and accumulation in Dongying Depression of the continental faulted basin. Therefore, the fault activities may mainly constrain on the development of hydrocarbon pathways in space and time. Even more, using homogenization temperatures of fluid inclusion in digenetic minerals, three critical moments for hydrocarbon accumulation have been determined as well in Dongying Depression, which happened during the late stage of Dongying Formation (Ed), the early stage of Guantao Formation (Nig) and the early stage of Minghuazhen Formation (Nim), respectively. Comparatively, the last stage is looked as the main forming-reservoir period, which has also been supported by the results of geochemical analysis and simulation experiments of hydrocarbon generation and expulsion. Clearly, the times of hydrocarbon migration and accumulation are consistent with those of the fault activities in Dongying Depression, which indicate that tectonic activities would control the forming-reservoir. A conceptual model of faulting-episodic expulsion coupled with episodic forming-reservoir has then been established in this study. In the third part of this paper, some focusing areas were selected for the fine descriptions of pathway distribution and forming-reservoir, which has given four types of reservoir assemblage in terms of the main pathway and its correlation with the reservoir and trap: (1) mainly consisted of sandy bodies; (2) mainly consisted of faults; (3) mainly consisted of unconformities; and (4) their complex with two or three types of pathways. This classified criteria has also been applied to access the risk of some prospected traps in Dongying Depression. Finally, through the application of reservoir assemblage integrated with pathway distribution to all the prospective targets in Dongying Depression, the new favorably hydrocarbon accumulated belts have been figured out, and more subtle reservoirs have also been found. For examples, during 2000 and 2002, in the mature exploration areas, such as Liangjialou and Shengtuo structural closures etc., newly proved reserves were 2274 * 104t, and forecasted oil reserves 5660-5860xl04t; and in the predicted favorable areas, newly additional controlled oil reserves was 3355xl04t. Besides those, many other favorable exploration areas need to be further appraised.
Resumo:
This paper is belonging to Chinese Petrochemical Industry Corporation's key project. Although it is very difficult, it has important theoretical and practical value. Its targets is to make lithological petroleum pool exploration great breakthrough in Dongying sag, by applying advanced theories, the last-minute methods and technology in highly explored zones. By using synthetically multi- discipline theories, methods and technology such as petroleum geology, sedimentology, structure geology, rock mechanics, dynamics of petroleum pool formation, geochemistry, geophysics and so on, and by making full use of computer , the process of petroleum pool forming and distribution rules of lithological petroleum pools have been thoroughly investigated and analyzed in sharp-slope, gentle-slope as well as low-lying region of Dongying sag including dynamic and static. With the study of tectonic stress field, fluid potential field and pressure field, we revealed dynamics condition, distribution rule, control factors and petroleum forming mechanism of lithological pool, and established the forming mode of lithological pool of Dongying sag. The main conclusion as follow: Strata framework, structure framework and sedimentary system of Dongying sag have been established which were the basis of petroleum prediction. There are three kinds of oil source which were from Es4,Es3 and mixed type, also three petroleum forming phases which were the telophase of Dongying stage, Guantao stage and Minghuazhen group, which occur in different geological environment. By using of most advanced numerical modeling software, the space distribution and time evolve of stress field and fluid potential field have been revealed from Esl up to the present. The region with low earth stress and low fluid potential were enrichment region of lithological petroleum pool and fault-block pool. The dynamics mechanism of Lithological petroleum pool in Dongying sag was collocating seal box, abnormity pressure, index number of petroleum forming and static factors on time and space, which was the most important factor of controlling petroleum pool forming, distribution and enrichment. The multi phase active and evolve of seal and unseal about different order fault were main factors of controlling petroleum pool forming of Dongying sag, which have important value for predicting lithological petroleum pool. It is revealed the lithological petroleum pool forming mode that included respective character, forming mechanism and distribution rule in four structural belt, which was a base for lithological petroleum pool prediction. The theories, technology and methods of studying, description, characterize and prediction lithological petroleum pool were established, which have important popularization value. Several lithological pool have been predicted in stress transform, zone, abrupt slope zone, fractured surface changed zone, tosional stress growth zone and abnormity pressure zone with noticeable economic benefit after exploration.
Resumo:
Based on the study of types, even temperature, the character of age-old fluid and fluid pressure of the reservoir fluid-inclusion in the Upper Paleozoic of Ordos Basin , combining with the diagenesis and character of gas geochemistry, reservoir sequence, cause of the low pressure reservoir formation and formation environment have been studied, the following knows are acquired: Abundant fluid-conclusions have developed in sandstone reservoir in Upper Paleozoic of Ordos Basin,and its kinds is numerous , also taking place some changes such as shrinking rock, cracking, stretching after formation. According to formation cause, fluid inclusion is divided into two types:successive and nonsuccessive inclusion. Nonsuccessive inclusion is further divided into brine inclusion, containing salt crystal inclusion, gaseity hydrocarbon conclusion and liquid hydrocarbon conclusion and so on. The gaseity hydrocarbon conclusion distributes at all the Basin, the liquid hydrocarbon conclusion mainly distributes at the East of Basin, and its two kinds of fluorescence color: blue and buff reflects at least two periods of oil filling and oil source of the different maturity. The study of diagenesis has indicated that five periods of diagenesis correspond to five periods inclusion's growth.The first and second period conclusions mainly distribute at the increasing margin of quartz, little amount and low even temperature, containing little gaseity hydrocarbon conclusion; The third and fourth conclusions are very rich, and having multiplicity forms, gaseity hydrocarbon conclusion of different facies, distributing at the increasing margin and crevice of quartz, its even temperature is between 85℃and 135℃;The fifth inclusion is relatively few ,mainly distributing at vein quartz and calcite, and developing few gaseity hydrocarbon conclusion. The fluid in the inclusion is mainly NaCl brine:low and high salinity brine fluid(containing salt crystal).The former salinity is between 0.18% and 18.55%,and mainly centralized distributing at three sectongs: from 0% to 4%, from 6% to 8%, from 10% to 14%, expressing that the alternation of the underground fluid was not intense, the conservation condition was good in different periods. The trapping pressure of the gaseity hydrocarbon conclusion calculated by PVTsim(V10)simulation is between 21.39 MPa and 42.58MPa,the average is 28.99MPa,mainlydistributes at between 24 MPa and 34MPa,and having a character of gradually lower from early to late time. The pressure of SuLiGe and WuShenQi dropped quickly in early time, and YuLin, ShenMu-MIZhi gas area dropped slowly in early and quickly in late time, ha portrait the change of trapping pressure can be divided into three old-age pressure systems: TaiYuan-ShanXi formation, low ShiHeZi formation and high ShiHeZi-ShiQianFeng formation. In plane, the trapping pressure dropped lowly from south to north in main reservoir period, and this reflects the gas migrating direction in the geohistory period. The analysis of gas component and monnmer hydrocarbon isotope indicates that the gas in Upper Paleozoic of Ordos Basin is coal-seam gas. The gas C_1-C_4 rnonnmer hydrocarbon isotopes has distinct differences in different stratums of different areas, and forming YuLin, SuLiGe and ShenMu-MIZhi three different distributing types. To sum up, gas reservoir combination in Upper Paleozoic of Ordos Basin can be divided into three sets of combination of reservoir formation: endogenesis type, near source type and farther source type,and near source gas combinations of reservoir formation is the main gas exploration area for its high gas filling intensity, large reservoir size.
Resumo:
The Sawuer gold belt is located in the transition belt between Siberian plate and Kazakhstan-Junggar plate. Based on the geological and geochemical studies on the Kuoerzhenkuola and Buerkesidai gold deposits, in Sawuer gold mineralization belt, the time-space structure of mineralization and mineralizing factor are studied, the metallogenic regularity is concluded in thistheses. The ore bodies have the regularity that orebody are of the extensive and compressive in the sallow and depth of volcanic apparatue, respectively, and the vertical extension of orebody is more intensive than the horizontal extension. The gold deposits were controlled by the fractures of volcanic apparatus and regional faults, and featured by the hydrothermal alteration and metasomatism type disseminated mineralization and filling type vein mineralization. By virtue of the geological and geochemical studies on the two deposits that the formation of the two deposits are significantly related to the volcanic activity, we propose new ideas about their origin: (1) the two deposits are located in the same strata, and share the same genesis. (2) both of two deposits are volcanogenic late-stage hydrothermal gold deposits. Based on mapping of volcanic lithofacies and structure for the first time, it is discovered that a volcanic apparatus existed in the study area. Volcanic-intrusive activity can be divided into three cycles and nine lithofacies. where the two deposits are hosted in the same volcanic cycle, in this case, the wall-rock should belong to the same strata. The 40Ar-39Ar age method is employed in this work to analyze the fluid inclusions of quartz in the ore bodies from Kuoerzhenkuola and Buerkesidai gold deposits. The results show that the main mineralization occurred in 332.05 + 2.02-332.59 + 0.5IMa and 335.53 + 0.32Ma~336.78 + 0.50Ma for Kuoerzhenkuola and Buerkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic epoch of the tow deposits are close to those of the hosting rocks formed by volcanic activity of Sawuer gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits? and identifies that in Hercynian period, the Altai developed tectonic-magmatic-hydrothermal mineralization of Early Carboniferous period, except known two metallogenic mineralization periods including tectonic-magmatic-hydrothermal mineralization of Devonian period and Late Carboniferous-Permian period respectively. The study of fluid inclusions indicates that the ore-forming fluid is a type of NaCl-HbO fluid with medium-low temperature and low salinity, Au is transported by the type of auric-sulfur complex (Au (HS)2-), the ore is formed in reduction condition. Hydrogen and oxygen isotopes of fluid inclusions in the major mineralizating stage show that the solutions mainly originated from magmatic water and meteoric water. The fluid mixing and water-rock reaction cause the deposition of Au. The helium and argon isotope compositions of fluid inclusions hosted in pyrite have been measured from Kuoerzhenkuola and Buerkesidai gold deposits in Sawuer gold belt. The results show that the ore-forming fluids of two deposits possessed the same source and is a mixture of mantle- and partial meteoric water-derived fluid, and the reliability of He and Ar isotopic compositions in Hercynian period is discussed. Isotopic studies including H, O, He, C, S, Pb and Sr reveal the same result that the ore-forming fluids of two deposits possessed the same source: the water derived mainly from magmatic water, partially from meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two deposits are a mixture of mantle-derived fluids being incorporated by crust-derived fluid, and shallow partial meteoric water. Based on these results, it is proposed that the geneses of the two gold deposits are the same, being volcanogenic late-stage hydrothermal gold deposits that the ore-forming fluids filled in fractures of volcanic apparatus and metasomatized the host rocks in the volcanic apparatus. It is the first time we carried out the geophysical exploration, that is, the EH-4 continuous electrical conductivity image system measurement, the results show that relative large-size mineralizing anomalies in underground have been discovered.lt can confirm the law and genesis of the deposits mentioned above, and change the two abandoned mines to current large-size potenial exploration target.