956 resultados para 2-LAYER FLUID
Resumo:
The efficacy of whole parasite and vesicular fluid antigen extracts from Taenia solium and Taenia crassiceps cysticerci for immunodiagnosis of neurocysticercosis was evaluated using ELISA on cerebrospinal fluid samples. Anticysticercal IgG antibodies were assayed in cerebrospinal fluid samples from 23 patients with neurocysticercosis and 35 patients with other neurological disorders. The ELISA reaction for the whole Taenia solium cysticercal extract showed 91.3% sensitivity and 94.3% specificity, whereas the sensitivity and specificity of the ELISA for the whole Taenia crassiceps cysticercal extract were 87% and 94.3%, respectively. The ELISA reactions for vesicular fluid from Taenia solium or Taenia crassiceps showed 91.3% sensitivity and 97.1% specificity. Considering the results obtained from the four antigen preparations, vesicular fluid from Taenia solium and Taenia crassiceps cysticerci may be useful as a source of antigens for immunological reactions that are used for detecting specific antibodies in cerebrospinal fluid samples from patients with neurocysticercosis.
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
Introduction Toxoplasmosis may be life-threatening in fetuses and in immune-deficient patients. Conventional laboratory diagnosis of toxoplasmosis is based on the presence of IgM and IgG anti-Toxoplasma gondii antibodies; however, molecular techniques have emerged as alternative tools due to their increased sensitivity. The aim of this study was to compare the performance of 4 PCR-based methods for the laboratory diagnosis of toxoplasmosis. One hundred pregnant women who seroconverted during pregnancy were included in the study. The definition of cases was based on a 12-month follow-up of the infants. Methods Amniotic fluid samples were submitted to DNA extraction and amplification by the following 4 Toxoplasma techniques performed with parasite B1 gene primers: conventional PCR, nested-PCR, multiplex-nested-PCR, and real-time PCR. Seven parameters were analyzed, sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and efficiency (Ef). Results Fifty-nine of the 100 infants had toxoplasmosis; 42 (71.2%) had IgM antibodies at birth but were asymptomatic, and the remaining 17 cases had non-detectable IgM antibodies but high IgG antibody titers that were associated with retinochoroiditis in 8 (13.5%) cases, abnormal cranial ultrasound in 5 (8.5%) cases, and signs/symptoms suggestive of infection in 4 (6.8%) cases. The conventional PCR assay detected 50 cases (9 false-negatives), nested-PCR detected 58 cases (1 false-negative and 4 false-positives), multiplex-nested-PCR detected 57 cases (2 false-negatives), and real-time-PCR detected 58 cases (1 false-negative). Conclusions The real-time PCR assay was the best-performing technique based on the parameters of Se (98.3%), Sp (100%), PPV (100%), NPV (97.6%), PLR (∞), NLR (0.017), and Ef (99%).
Resumo:
Introduction The aim of this study was to explore the environment of Echinococcus granulosus (E. granulosus) protoscolices and their relationship with their host. Methods Proteins from the hydatid-cyst fluid (HCF) from E. granulosus were identified by proteomics. An inductively coupled plasma atomic emission spectrometer (ICP-AES) was used to determine the elements, an automatic biochemical analyzer was used to detect the types and levels of biochemical indices, and an automatic amino acid analyzer was used to detect the types and levels of amino acids in the E. granulosus HCF. Results I) Approximately 30 protein spots and 21 peptide mass fingerprints (PMF) were acquired in the two-dimensional gel electrophoresis (2-DE) pattern of hydatid fluid; II) We detected 10 chemical elements in the cyst fluid, including sodium, potassium, calcium, magnesium, copper, and zinc; III) We measured 19 biochemical metabolites in the cyst fluid, and the amount of most of these metabolites was lower than that in normal human serum; IV) We detected 17 free amino acids and measured some of these, including alanine, glycine, and valine. Conclusions We identified and measured many chemical components of the cyst fluid, providing a theoretical basis for developing new drugs to prevent and treat hydatid disease by inhibiting or blocking nutrition, metabolism, and other functions of the pathogen.
Resumo:
White Color tuning is an attractive feature that Organic Light Emitting Diodes (OLEDs) offer. Up until now, there hasn’t been any report that mix both color tuning abilities with device stability. In this work, White OLEDs (W-OLEDs) based on a single RGB blend composed of a blue emitting N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) doped with a green emitting Coumarin-153 and a red emitting 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM1) dyes were produced. The final device structure was ITO/Blend/Bathocuproine (BCP)/ Tris(8-hydroxyquinolinato)aluminium (Alq3)/Al with an emission area of 0.25 cm2. The effects of the changing in DCM1’s concentration (from 0.5% to 1% wt.) allowed a tuning in the final white color resulting in devices capable of emitting a wide range of tunes – from cool to warm – while also keeping a low device complexity and a high stabilitty. Moreover, an explanation on the optoelectrical behavior of the device is presented. The best electroluminescense (EL) points toward 160 cd/m2 of brightness and 1.1 cd/A of efficiency, both prompted to being enhanced. An Impedance Spectroscopy (IS) analysis allowed to study both the effects of BCP as a Hole Blocking Layer and as an aging probe of the device. Finally, as a proof of concept, the emission was increased 9 and 64 times proving this structure can be effectively applied for general lighting.
Resumo:
Fully comprehending brain function, as the scale of neural networks, will only be possi-ble with the development of tools by micro and nanofabrication. Regarding specifically silicon microelectrodes arrays, a significant improvement in long-term performance of these implants is essential. This project aims to create a silicon microelectrode coating that provides high-quality electrical recordings, while limiting the inflammatory response of chronic implants. To this purpose, a combined chitosan and gold nanoparticles coating was produced allied with electrodes modification by electrodeposition with PEDOT/PSS in order to reduce the im-pedance at 1kHz. Using a dip-coating mechanism, the silicon probe was coated and then charac-terized both morphologically and electrochemically, with focus on the stability of post-surgery performance in anesthetized rodents. Since not only the inflammatory response analysis is vital, the electrodes recording degradation over time was also studied. The produced film presented a thickness of approximately 50 μm that led to an increase of impedance of less than 20 kΩ in average. On a 3 week chronic implant, the impedance in-crease on the coated probe was of 641 kΩ, compared with 2.4 MΩ obtained for the uncoated probe. The inflammatory response was also significantly reduced due to the biocompatible film as proved by histological tests.
Resumo:
Prolonged total food deprivation in non-obese adults is rare, and few studies have documented body composition changes in this setting. In a group of eight hunger strikers who refused alimentation for 43 days, water and energy compartments were estimated, aiming to assess the impact of progressive starvation. Measurements included body mass index (BMI), triceps skinfold (TSF), arm muscle circumference (AMC), and bioimpedance (BIA) determinations of water, fat, lean body mass (LBM), and total resistance. Indirect calorimetry was also performed in one occasion. The age of the group was 43.3±6.2 years (seven males, one female). Only water, intermittent vitamins and electrolytes were ingested, and average weight loss reached 17.9%. On the last two days of the fast (43rd-44th day) rapid intravenous fluid, electrolyte, and vitamin replenishment were provided before proceeding with realimentation. Body fat decreased approximately 60% (BIA and TSF), whereas BMI reduced only 18%. Initial fat was estimated by BIA as 52.2±5.4% of body weight, and even on the 43rd day it was still measured as 19.7±3.8% of weight. TSF findings were much lower and commensurate with other anthropometric results. Water was comparatively low with high total resistance, and these findings rapidly reversed upon the intravenous rapid hydration. At the end of the starvation period, BMI (21.5±2.6 kg/m²) and most anthropometric determinations were still acceptable, suggesting efficient energy and muscle conservation. Conclusions: 1) All compartments diminished during fasting, but body fat was by far the most affected; 2) Total water was low and total body resistance comparatively elevated, but these findings rapidly reversed upon rehydration; 3) Exaggerated fat percentage estimates from BIA tests and simultaneous increase in lean body mass estimates suggested that this method was inappropriate for assessing energy compartments in the studied population; 4) Patients were not morphologically malnourished after 43 days of fasting; however, the prognostic impact of other impairments was not considered in this analysis.
Resumo:
This thesis project concentrated on both the study and treatment of an early 20th century male portrait in oil from Colecção Caixa Geral de Depósitos, Lisbon, Portugal. The portrait of Januário Correia de Almeida, exhibits a tear (approximately 4.0 cm by 2.3 cm) associated with paint loss on the right upper side, where it is possible to observe an unusually thick size layer (approximately 50 microns) and an open weave mesh canvas. Size layers made from animal glue remain subject to severe dimensional changes due to changes in relative humidity (RH), thereby affecting the stability of the painting. In this case, the response to moisture of the size layer is minimal and the painting is largely uncracked with very little active flaking. This suggests that the size layer has undergone pre-treatment to render it unresponsive to moisture or water. Reconstructions based on late nineteenth century recipes using historically appropriate materials are used to explore various options for modifying the characteristics of gelatine, some of which may relate to the Portrait’s size layer. The thesis is separated into two parts: Part 1: Describes the history, condition, materials and techniques of the painting. It also details the treatment of Januário Correia de Almeida as well as the choices made and problems encountered during the treatment. Part 2: Discusses the history of commercial gelatine production, the choice of the appropriate animal source to extract the collagen to produce reconstructions of the portrait’s size layer as well as the characterization of selected reconstructions. The execution of a shallow textured infill led to one publication and one presentation: Abstract accepted for presentation and publication, International Meeting on Retouching of Cultural Heritage (RECH3), Francisco Brites, Leslie Carlyle and Raquel Marques, ‘’Hand building a Low Profile Textured Fill for a Large Loss’’.
Resumo:
OBJECTIVE: Macrolide antibiotics have anti-inflammatory properties in lung diseases. The aim of this study was to investigate the effect of clarithromycin in pulmonary cellular inflammatory response in mice. METHOD: Eight adult Swiss mice were studied. All animals received an intranasal challenge (80 µL) with dead Pseudomonas aeruginosa (1.0 x 10(12) CFU/mL). Bronchoalveolar lavage was performed 2 days later, with total cell count and differential cell analysis. The study group (n = 4) received clarithromycin treatment (50 mg/kg/day, intraperitoneal) for 5 days. Treatment was initiated 2 days before intranasal challenge. RESULTS: There was no significant difference in total cell count between the groups (mean: 2.0 x 10(6) and 1.3 x 10(6), respectively). In both groups, there was a predominance of neutrophils. However, the study group had a higher percentage of lymphocytes in the bronchoalveolar lavage than the control group (median of 19% vs 2.5%, P = .029). CONCLUSION: Clarithromycin alters the cytological pattern of bronchoalveolar lavage of Swiss mice with neutrophil pulmonary inflammation, significantly increasing the percentage of lymphocytes.
Resumo:
Aus: Soft matter, Vol. 10.2014, H. 25, S. 4487 - 4497
Resumo:
We are interested in coupled microscopic/macroscopic models describing the evolution of particles dispersed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe the microscopic motion of the particles coupled to the Euler equations for a compressible fluid. We investigate dissipative quantities, equilibria and their stability properties and the role of external forces. We also study some asymptotic problems, their equilibria and stability and the derivation of macroscopic two-phase models.
Resumo:
The straightforward anatomical organisation of the developing and mature rat spinal cord was used to determine and interpret the time of appearance and expression patterns of microtubule-associated proteins (MAP) 1b and 2. Immunoblots revealed the presence of MAP1b and 2 in the early embryonic rat spinal cord and confirmed the specificity of the used anti-MAP mouse monoclonal antibodies. The immunocytochemical data demonstrated a rostral-to-caudal and ventral-to-dorsal gradient in the expression of MAP1b/2 within the developing spinal cord. In the matrix layer, MAP1b was found in a distinct radial pattern distributed between the membrana limitans interna and externa between embryonal day (E)12 and E15. Immunostaining for vimentin revealed that this MAP1b pattern was morphologically and topographically different from the radial glial pattern which was present in the matrix layer between E13 and E19. The ventral-to-dorsal developmental gradient of the MAP1b staining in the spinal cord matrix layer indicates a close involvement of MAP1b either in the organisation of the microtubules in the cytoplasmatic extensions of the proliferating neuroblasts or neuroblast mitosis. MAP2 could not be detected in the developing matrix layer. In the mantle and marginal layer, MAP1b was abundantly present between E12 and postnatal day (P)0. After birth, the staining intensity for MAP1b gradually decreased in both layers towards a faint appearance at maturity. The distribution patterns suggest an involvement of MAP1b in the maturation of the motor neurons, the contralaterally and ipsilaterally projecting axons and the ascending and descending long axons of the rat spinal cord. MAP2 was present in the spinal cord grey matter between E12 and maturity, which reflects a role for MAP2 in the development as well as in the maintenance of microtubules. The present description of the expression patterns of MAP1b and 2 in the developing spinal cord suggests important roles of the two proteins in various morphogenetic events. The findings may serve as the basis for future studies on the function of MAP1b and 2 in the development of the central nervous system.
Resumo:
Aquest projecte es basa en l'estudi de l'oferiment de qualitat de servei en xarxes wireless i satel·litals. Per això l'estudi de les tècniques de cross-layer i del IEEE 802.11e ha sigut el punt clau per al desenvolupament teòric d’aquest estudi. Usant el simulador de xarxes network simulator, a la part de simulacions es plantegen tres situacions: l'estudi de la xarxa satel·lital, l'estudi del mètode d'accés HCCA i la interconnexió de la xarxa satel·lital amb la wireless. Encara que aquest últim punt, incomplet en aquest projecte, ha de ser la continuació per a futures investigacions.
Resumo:
RATIONALE: A dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a well-documented neurobiological finding in major depression. Moreover, clinically effective therapy with antidepressant drugs may normalize the HPA axis activity. OBJECTIVE: The aim of this study was to test whether citalopram (R/S-CIT) affects the function of the HPA axis in patients with major depression (DSM IV). METHODS: Twenty depressed patients (11 women and 9 men) were challenged with a combined dexamethasone (DEX) suppression and corticotropin-releasing hormone (CRH) stimulation test (DEX/CRH test) following a placebo week and after 2, 4, and 16 weeks of 40 mg/day R/S-CIT treatment. RESULTS: The results show a time-dependent reduction of adrenocorticotrophic hormone (ACTH) and cortisol response during the DEX/CRH test both in treatment responders and nonresponders within 16 weeks. There was a significant relationship between post-DEX baseline cortisol levels (measured before administration of CRH) and severity of depression at pretreatment baseline. Multiple linear regression analyses were performed to identify the impact of psychopathology and hormonal stress responsiveness and R/S-CIT concentrations in plasma and cerebrospinal fluid (CSF). The magnitude of decrease in cortisol responsivity from pretreatment baseline to week 4 on drug [delta-area under the curve (AUC) cortisol] was a significant predictor (p<0.0001) of the degree of symptom improvement following 16 weeks on drug (i.e., decrease in HAM-D21 total score). The model demonstrated that the interaction of CSF S-CIT concentrations and clinical improvement was the most powerful predictor of AUC cortisol responsiveness. CONCLUSION: The present study shows that decreased AUC cortisol was highly associated with S-CIT concentrations in plasma and CSF. Therefore, our data suggest that the CSF or plasma S-CIT concentrations rather than the R/S-CIT dose should be considered as an indicator of the selective serotonergic reuptake inhibitors (SSRIs) effect on HPA axis responsiveness as measured by AUC cortisol response.
Resumo:
The interplay of amyloid and mitochondrial function is considered crucial in the pathophysiology of Alzheimer's disease (AD). We tested the association of the putative marker of mitochondrial function N-acetylaspartate (NAA) as measured by proton magnetic resonance spectroscopy within the medial temporal lobe and cerebrospinal fluid amyoid-β42 (Aβ42), total Tau and pTau181. 109 patients were recruited in a multicenter study (40 mild AD patients, 14 non-AD dementia patients, 29 mild cognitive impairment (MCI) AD-type patients, 26 MCI of non-AD type patients). NAA correlated with Aβ42 within the AD group. Since the NAA concentration is coupled to neuronal mitochondrial function, the correlation between NAA and Aβ42 may reflect the interaction between disrupted mitochondrial pathways and amyloid production.