998 resultados para 1995_12130645 Optics-14


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past one hundred and fifty years, the landscape and ecosystems of the Pacific Northwest coastal region, already subject to many variable natural forces, have been profoundly affected by human activities. In virtually every coastal watershed from the Strait of Juan de Fuca to Cape Mendocino, settlement, exploitation and development of resou?-ces have altered natural ecosystems. Vast, complex forests that once covered the region have been largely replaced by tree plantations or converted to non-forest conditions. Narrow coastal valleys, once filled with wetlands and braided streams that tempered storm runoff and provided salmon habitat, were drained, filled, or have otherwise been altered to create land for agriculture and other uses. Tideflats and saltmarshes in both large and small estuaries were filled for industrial, commercial, and other urban uses. Many estuaries, including that of the Columbia River, have been channeled, deepened, and jettied to provide for safe, reliable navigation. The prodigious rainfall in the region, once buffered by dense vegetation and complex river and stream habitat, now surges down sirfiplified stream channels laden with increased burdens of sediment and debris. Although these and many other changes have occurred incrementally over time and in widely separated areas, their sum can now be seen to have significantly affected the natural productivity of the region and, as a consequence, changed the economic structure of its human communities. This activity has taken place in a region already shaped by many interacting and dynamic natural forces. Large-scale ocean circulation patterns, which vary over long time periods, determine the strength and location of currents along the coast, and thus affect conditions in the nearshore ocean and estuaries throughout the region. Periodic seasonal differences in the weather and ocean act on shorter time scales; winters are typically wet with storms from the southwest while summers tend to be dry with winds from the northwest. Some phenomena are episodic, such as El Nifio events, which alter weather, marine habitats, and the distribution and survival of marine organisms. Other oceanic and atmospheric changes operate more slowly; over time scales of decades, centuries, and longer. Episodic geologic events also punctuate the region, such as volcanic eruptions that discharge widespread blankets of ash, frequent minor earthquakes, and major subduction zone earthquakes each 300 to 500 years that release accumulated tectonic strain, dropping stretches of ocean shoreline, inundating estuaries and coastal valleys, and triggering landslides that reshape stream profiles. While these many natural processes have altered, sometimes dramatically, the Pacific Northwest coastal region, these same processes have formed productive marine and coastal ecosystems, and many of the species in these systems have adapted to the variable environmental conditions of the region to ensure their long-term survival.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

油菜甾醇类物质(Brassinosteroids, BRs)是植物生长发育必需的一类植物激素。在拟南芥中,BR可直接结合在位于细胞膜表面的受体激酶BRI1去激活BR的信号转导从而调节细胞核内的基因表达来调控植物的生长发育。为更好的了解水稻中BR信号的转导机理,我们利用反向遗传学研究了OsBZR1的功能并鉴定了一些与OsBZR1有相互作用的蛋白。利用RNAi干涉降低植物体内OsBZR1的表达可导致植株矮小,叶片直立,BR敏感性降低并改变一些BR响应基因的表达水平。此外我们利用酵母双杂交发现14-3-3蛋白可与OsBZR1发生相互作用,而去除推定的14-3-3结合位点的OsBZR1则不能与14-3-3蛋白在酵母和植物体内发生相互作用。去除14-3-3结合位点的OsBZR1转入拟南芥bri1-5突变体中可部分恢复bri1-5的表型而转野生的OsBZR1则对bri1-5的表型没有明显的影响。同时我们发现去除OsBZR1的14-3-3结合位点可影响OsBZR1在细胞内的分布,能增加OsBZR1在细胞核内的分布,这表明14-3-3蛋白至少可通过降低OsBZR1核内的分布来抑制OsBZR1的功能。这些结果有力的证明了OsBZR1和14-3-3蛋白在水稻BR信号转导中的重要功能。