1000 resultados para 14C age -400yr


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkenone sea surface temperature (SST) records were generated from the Ocean Drilling Program's (ODP) Sites 1014 and 1016 to examine the response of the California Current System to global climate change during the last 136 ka. The temperature differences between these sites (Delta SST(NEP)=SST(ODP1014)-SST(ODP1016)) reflected the intensity of the California Current and varied between 0.4 and 6.1 °C. A high Delta SST(NEP) (weaker California Current) was found for late marine isotope stage (MIS) 2 and early MIS 5e, while a low Delta SST(NEP) (stronger California Current) was detected for mid-MIS 5e and MIS 1. Spectral analysis indicated that this variation pattern dominated 23- (precession) and 30-ka periods. Comparison of the Delta SST(NEP) and SST based on data from core MD01-2421 at the Japan margin revealed anti-phase variation; the high Delta SST(NEP) (weakening of the California Current) corresponded to the low SST at the Japan margin (the southward displacement of the NW Pacific subarctic boundary), and vice versa. This variation was synchronous with a model prediction of the tropical El Niño-Southern Oscillation behavior. These findings suggest that the intensity of the North Pacific High varied in response to precessional forcing, and also that the response has been linked with the changes of tropical ocean-atmosphere interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conversion of surface water to deep water in the North Atlantic results in the release of heat from the ocean to the atmosphere, which may have amplified millennial-scale climate variability during glacial times (Broecker et al., 1990, doi:10.1029/PA005i004p00469) and could even have contributed to the past 11,700 years of relatively mild climate (known as the Holocene epoch) (Bond et al., 2001, doi:10.1126/science.1065680; Alley et al., 1997, doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2; Keigwin and Boyle, 2000, doi:10.1073/pnas.97.4.1343). Here we investigate changes in the carbon-isotope composition of benthic foraminifera throughout the Holocene and find that deep-water production varied on a centennial-millennial timescale. These variations may be linked to surface and atmospheric events that hint at a contribution to climate change over this period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic foraminiferal stable isotope records from four high-resolution sediment cores, forming a depth transect between 1237 m and 2303 m on the South Iceland Rise, have been used to reconstruct intermediate and deep water paleoceanographic changes in the northern North Atlantic during the last 21 ka (spanning Termination I and the Holocene). Typically, a sampling resolution of ~100 years is attained. Deglacial core chronologies are accurately tied to North Greenland Ice Core Project (NGRIP) ice core records through the correlation of tephra layers and changes in the percent abundance of Neogloboquadrina pachyderma (sinistral) with transitions in NGRIP. The evolution from the glacial mode of circulation to the present regime is punctuated by two periods with low benthic d13C and d18O values, which do not lie on glacial or Holocene water mass mixing lines. These periods correlate with the late Younger Dryas/Early Holocene (11.5-12.2 ka) and Heinrich Stadial 1 (14.7-16.8 ka) during which time freshwater input and sea-ice formation led to brine rejection both locally and as an overflow exported from the Nordic seas into the northern North Atlantic, as earlier reported by Meland et al. (2008). The export of brine with low ?13C values from the Nordic seas complicates traditional interpretations of low d13C values during the deglaciation as incursions of southern sourced water, although the spatial extent of this brine is uncertain. The records also reveal that the onset of the Younger Dryas was accompanied by an abrupt and transient (~200-300 year duration) decrease in the ventilation of the northern North Atlantic. During the Holocene, Iceland-Scotland Overflow Water only reached its modern flow strength and/or depth over the South Iceland Rise by 7-8 ka, in parallel with surface ocean reorganizations and a cessation in deglacial meltwater input to the North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between ~41 and ~18 ka B.P. Ice-rafted debris flux and composition, 40Ar/39Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from ~28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ~40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use sediment cores from the South Tasman Rise (STR) to reconstruct deep- water circulation in the southwest Pacific sector of the Southern Ocean. Sediment cores MD972106 (45° 09' S, 146° 17' E, 3310 m water depth) and GC34 (45° 06' S, 147° 45' E, 4002 m water depth) preserve records covering the last 160 kyr, with chronology controlled by calibrated accelerator mass spectrometry radiocarbon dates and benthic foraminiferal d18O tied to SPECMAP. The STR benthic foraminiferal d13C records provide new d13C values for Southern Ocean deep water spanning the last 160 kyr at sites unlikely to be affected by variations in productivity. The records establish that glacial benthic foraminifera (Cibicidoides spp.) d13C values are lower relative to interglacial values and are comparable to previous glacial benthic d13C records in the Indian and Pacific sectors of the Southern Ocean. Comparisons of the benthic foraminiferal d13C time series at the STR are made with the equatorial Pacific (V19-30 and Site 846) and the equatorial Atlantic (GeoB1115). The similarity of benthic d13C records at the STR to the equatorial Pacific suggest the Southern Ocean deep-water mass closely tracked those of the deep Pacific, and the presence of a d13C gradient between the STR and the equatorial Atlantic suggests there was continual production of northern source deep water over the past 160 kyr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate responses and changes in marine environments during the last deglaciation have been controversial and few paleoceanographic data are available from the tropical South Pacific, though this region is crucial in the investigations of ocean-atmosphere interactions. Integrated Ocean Drilling Program Expedition 310 was conducted to establish the time course of the postglacial sea-level rise at Tahiti in the South Pacific. A principal objective of this expedition was to examine the variation of marine environments during the last deglaciation. As fossil Porites coral is ideal for assessing past marine environments, we selected only Porites specimens from the many coral specimens retrieved, examined them by XRD, and dated them by the 14C method. In all, we obtained 17 pristine Porites specimens composed of only aragonite with ages from 15 to 9 ka. Then, we measured Mg/Ca, Ba/Ca, and U/Ca ratios and Cd contents as proxies for upwelling and sea surface temperature. Higher Ba/Ca ratios and Cd content together with lower reconstructed SSTs using U/Ca ratios in the coral specimens between 12.6 and 9.8 cal ka compared to around 15 cal ka suggest that upwelling and/or entrainment of subsurface water into mixed layer was enhanced around Tahiti during this period. This finding is consistent with previous reports and supports the idea that the South Pacific was characterized by La Niña-like conditions at least from 12.6 to 9.8 cal ka.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For slowly accumulating sediments, a major contrast exists in the radiocarbon-age differences among coexisting shells of planktic foraminifera between those experiencing little dissolution and those experiencing significant dissolution. In the former, the ages generally agree to within a couple of hundred years. In the latter, age differences as large as 1000 years are common. The most likely explanation appears to be the Barker Effect, which involves the preferential fragmentation of dissolution-prone G. sacculifer and G. ruber. The whole shells of these species picked for radiocarbon dating have shorter residence times in the bioturbation zone than those for dissolution-resistant species (including benthics). As low accumulation rate sediment cores often fail to yield reliable radiocarbon-based ocean ventilation ages, where possible, such studies should be conducted on high accumulation rate cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiocarbon dating series, bulk sediment, and organic carbon flux from various Atlantic deep-sea regions reveal that the thickness of the bioturbated zone increases by 2 cm if food supply increases by 1 gC/m**2/yr (r = 0.8). Bulk sediment accumulation rates do not influence the depth of bioturbational mixing under normal pelagic sedimentary conditions. We believe that this relationship between nutrient supply and benthic mixing can be used for a quantitative and time-variable unmixing procedure to improve high-resolution stratigraphic correlations and paleoclimatic interpretations of deep-sea records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deglacial reefs from Tahiti (IODP 310) feature a co-occurrence of zooxanthellate corals with microbialites that compose up to 80 vol% of the reef framework. The notion that microbialites tend to form in more nutrient-rich environments has previously led to the concept that such encrustations are considerably younger than the coral framework, and that they have formed in deeper storeys of the reef edifice, or that they represent severe disturbances of the reef ecosystem. As indicated by their repetitive interbedding with coralline red algae, the microbialites of this reef succession of Tahiti, however, formed immediately after coral growth under photic conditions. Clearly, the deglacial reef microbialites present in the IODP 310 cores did not follow disturbances such as drowning or suffocation by terrestrial material, and are not "disaster forms". Given that the corals and the microbialites developed in close spatial proximity, highly elevated nutrient levels caused by fluvial or groundwater transport from the volcanic hinterland are an unlikely cause for the exceptionally voluminous development of microbialites. That voluminous deglacial reef microbialites generally are restricted to volcanic islands, however, implies that moderately, and possibly episodically elevated nutrient levels favored this type of microbialite formation.