972 resultados para 111-678A
Resumo:
Neste trabalho investigamos as propriedades magnéticas de currais de Fe, Cr e Mn adsorvidos sobre a superfície de Pt(111) utilizando o método RS-LMTO-ASA (Real Space Linear Muffin Tin Orbital - Atomic Sphere Approximation), o qual é um método de primeiros princípios baseado na Teoria do Funcional da Densidade (DFT-Density Functional Theory), que permite o cálculo de estruturas magnéticas não-colineares. Obtivemos que os átomos de Fe apresentam momentos magnéticos elevados, da ordem de 3.5µB /átomo, e têm uma interação de troca entre primeiros vizinhos forte e ferro-magnética. Isto leva a um arranjo magnético colinear no curral. Para os currais de Mn e Cr encontramos que estes possuem elevado momento magnético, da ordem de 4.51µB /átomo e 4.15µB /átomo, respectivamente, e interações de troca entre primeiros vizinhos antiferro-magnéticas. Isto conduz a arranjos magnéticos colineares em currais simples, assim como interessantes ordenamentos não-colineares, tais como estruturas tipo vértice (skyrmions), para os currais com uma geometria particular onde o antiferromagnetismo se apresenta frustado.
Resumo:
Neste trabalho, utilizamos o método de primeiros princípios, RS-LMTO-ASA (“Real Space - Linear Muffin-Tin Orbital - Atomic Sphere Approximation”), baseado na Teoria do Funcional da Densidade (DFT) e implementado para o cálculo de estruturas magnéticas não-colineares, para investigar as propriedades magnéticas de nanoestruturas de metais de transição 3d (Cr, Mn, Fe, Co e Ni) adsorvidas na superfície de Pt(111). Diferentes geometrias como adátomos, dímeros, trímeros, fios lineares e zig-zag foram consideradas e, o tamanho dos aglomerados foi variado de 2 a 7 átomos. Mostramos que os aglomerados de Fe, Co e Ni sobre a superfície de Pt(111), para todas as geometrias simuladas, apresentam um ordenamento ferromagnético. Devido à redução do número de coordenação presente na superfície, os momentos de spin e orbital nos sítios de Fe, Co e Ni, para as diferentes geometrias, mostram-se elevados comparados com os respectivos valores dos momentos destes metais como bulk. Para os glomerados de Cr e Mn mostramos que a interação de troca antiferromagnética entre primeiros vizinhos leva a um ordenamento antiferromagnético colinear no caso de geometrias lineares. No entanto, se o antiferromagnetismo é frustrado por restrição geométrica imposta aos aglomerados pela superfície triangular do substrato, obtém-se um comportamento magnético não-colinear para aglomerados de Cr e Mn sobre a Pt(111). Nossos resultados estão em boa concordância com os resultados experimentais da literatura e com os resultados teóricos obtidos por outros métodos, quando existentes.
Resumo:
The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.
Resumo:
The Banks Presbyterian Church History is a history written by Mrs. Lena P. Kell entitled “The Early History of Banks Presbyterian Church” describing the history of the church from 1870s to 1947. The church is located in Waxhaw, North Carolina near Fort Mill. (Photocopies)
Resumo:
We review the previous literature and our recent work on first-principles studies of Cu3Au(100) and (111) surfaces, with focus on the segregation of atomic species to the surface at pristine conditions and in the presence of oxygen. In particular, the combined use of experimental and theoretical tools to achieve chemical identification at an atomic level of the surface species is emphasized and discussed.
Resumo:
Several studies have pointed out the immunomodulatory properties of the Salivary Gland Extract (SGE) from Lutzomyia longipalpis. We aimed to identify the SGE component (s) responsible for its effect on ovalbumin (OVA)-induced neutrophil migration (NM) and to evaluate the effect of SGE and components in the antigen-induced arthritis (AIA) model. We tested the anti-arthritic activities of SGE and the recombinant LJM111 salivary protein (rLJM111) by measuring the mechanical hypernociception and the NM into synovial cavity. Furthermore, we measured IL-17, TNF-alpha and IFN-gamma released by lymph nodes cells stimulated with mBSA or anti-CD3 using enzyme-linked immunosorbent assay (ELISA). Additionally, we tested the effect of SGE and rLJM111 on co-stimulatory molecules expression (MHC-II and CD-86) by flow cytometry. TNF-alpha and IL-10 production (ELISA) of bone marrow-derived dendritic cells (BMDCs) stimulated with LPS, chemotaxis and actin polymerization from neutrophils. Besides, the effect of SGE on CXCR2 and GRK-2 expression on neutrophils was investigated. We identified one plasmid expressing the protein LJM111 that prevented NM in OVA-challenged immunized mice. Furthermore, both SGE and rLJM111 inhibited NM and pain sensitivity in AIA and reduced IL-17, TNF-alpha and IFN-gamma. SGE and rLJM111 also reduced MHC-II and CD-86 expression and TNF-alpha whereas increased IL-10 release by LPS-stimulated BMDCs. SGE, but not LJM 111, inhibited neutrophils chemotaxis and actin polymerization. Additionally, SGE reduced neutrophil CXCR2 expression and increased GRK-2. Thus, rLJM111 is partially responsible for SGE mechanisms by diminishing DC function and maturation but not chemoattraction of neutrophils. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The development of metabolically stable radiolabeled gastrin analogues with suitable pharmacokinetics is a topic of recent research activity. These imaging vectors are of interest because the gastrin/CCK2 receptor is highly overexpressed in different tumors such as medullary thyroid cancer, neuroendocrine tumors, and SCLC. The drawback of current targeting agents is either their metabolic instability or their high kidney uptake. We present the synthesis and in vitro and in vivo evaluation of 11 (111)In-labeled DOTA-conjugated peptides that differ by their spacer between the peptide and the chelate. We introduced uncharged but hydrophilic spacers such as oligoethyleneglycol, serine, and glutamine. The affinity of all radiopeptides was high with IC(50) values between 0.5 and 4.8 nM. The improvement of human serum stability is 500-fold within this series of compounds. In addition the kidney uptake could be lowered distinctly and the tumor-to-kidney ratio improved almost 60-fold if compared with radiotracers having charged spacers such as glutamic acid.
Resumo:
As revealed for the first time by in situ scanning tunnelling spectroscopy (STS), ferrocene-modified Si(111) substrates show ambipolar field effect transistor (FET) behaviour upon electrolyte gating.
Resumo:
We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.