936 resultados para 100Hz vision-based state estimator
Resumo:
Purpose – This paper seeks to respond to recent calls for more engagement-based studies of corporate social reporting (CSR) practice by examining the views of corporate managers on the current state of, and future prospects for, social reporting in Bangladesh. Design/methodology/approach – The paper uses a series of interviews with senior managers from 23 Bangladeshi companies representing the multinational, domestic private and public sectors. Findings – Key findings are that the main motivation behind current reporting practice lies in a desire on the part of corporate management to manage powerful stakeholder groups, whilst perceived pressure from external forces, notably parent companies' instructions and demands from international buyers, is driving the process forward. In the latter context it appears that adoption of international social accounting standards and codes is likely to become more prevalent in the future. Reservations are expressed as to whether such a passive compliance strategy is likely to achieve much in the way of real changes in corporate behaviour, particularly when Western developed standards and codes are imposed without consideration of local cultural, economic and social factors. Indeed, such imposition could be regarded as little more than an example of the erection of non-tariff trade barriers rather than representing any meaningful move towards empowering indigenous stakeholder groups. Originality/value – The paper contributes to the literature on CSR in developing countries where there is a distinct lack of engagement-based published studies.
Resumo:
Adapting to blurred images makes in-focus images look too sharp, and vice-versa (Webster et al, 2002 Nature Neuroscience 5 839 - 840). We asked how such blur adaptation is related to contrast adaptation. Georgeson (1985 Spatial Vision 1 103 - 112) found that grating contrast adaptation followed a subtractive rule: perceived (matched) contrast of a grating was fairly well predicted by subtracting some fraction k(~0.3) of the adapting contrast from the test contrast. Here we apply that rule to the responses of a set of spatial filters at different scales and orientations. Blur is encoded by the pattern of filter response magnitudes over scale. We tested two versions - the 'norm model' and 'fatigue model' - against blur-matching data obtained after adaptation to sharpened, in-focus or blurred images. In the fatigue model, filter responses are simply reduced by exposure to the adapter. In the norm model, (a) the visual system is pre-adapted to a focused world and (b) discrepancy between observed and expected responses to the experimental adapter leads to additional reduction (or enhancement) of filter responses during experimental adaptation. The two models are closely related, but only the norm model gave a satisfactory account of results across the four experiments analysed, with one free parameter k. This model implies that the visual system is pre-adapted to focused images, that adapting to in-focus or blank images produces no change in adaptation, and that adapting to sharpened or blurred images changes the state of adaptation, leading to changes in perceived blur or sharpness.
Resumo:
This paper proposes a novel framework of incorporating protein-protein interactions (PPI) ontology knowledge into PPI extraction from biomedical literature in order to address the emerging challenges of deep natural language understanding. It is built upon the existing work on relation extraction using the Hidden Vector State (HVS) model. The HVS model belongs to the category of statistical learning methods. It can be trained directly from un-annotated data in a constrained way whilst at the same time being able to capture the underlying named entity relationships. However, it is difficult to incorporate background knowledge or non-local information into the HVS model. This paper proposes to represent the HVS model as a conditionally trained undirected graphical model in which non-local features derived from PPI ontology through inference would be easily incorporated. The seamless fusion of ontology inference with statistical learning produces a new paradigm to information extraction.
Resumo:
We investigate the problem of obtaining a dense reconstruction in real-time, from a live video stream. In recent years, multi-view stereo (MVS) has received considerable attention and a number of methods have been proposed. However, most methods operate under the assumption of a relatively sparse set of still images as input and unlimited computation time. Video based MVS has received less attention despite the fact that video sequences offer significant benefits in terms of usability of MVS systems. In this paper we propose a novel video based MVS algorithm that is suitable for real-time, interactive 3d modeling with a hand-held camera. The key idea is a per-pixel, probabilistic depth estimation scheme that updates posterior depth distributions with every new frame. The current implementation is capable of updating 15 million distributions/s. We evaluate the proposed method against the state-of-the-art real-time MVS method and show improvement in terms of accuracy. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Bladder cancer is among the most common cancers worldwide (4th in men). It is responsible for high patient morbidity and displays rapid recurrence and progression. Lack of sensitivity of gold standard techniques (white light cystoscopy, voided urine cytology) means many early treatable cases are missed. The result is a large number of advanced cases of bladder cancer which require extensive treatment and monitoring. For this reason, bladder cancer is the single most expensive cancer to treat on a per patient basis. In recent years, autofluorescence spectroscopy has begun to shed light into disease research. Of particular interest in cancer research are the fluorescent metabolic cofactors NADH and FAD. Early in tumour development, cancer cells often undergo a metabolic shift (the Warburg effect) resulting in increased NADH. The ratio of NADH to FAD ("redox ratio") can therefore be used as an indicator of the metabolic status of cells. Redox ratio measurements have been used to differentiate between healthy and cancer breast cells and to monitor cellular responses to therapies. Here, we have demonstrated, using healthy and bladder cancer cell lines, a statistically significant difference in the redox ratio of bladder cancer cells, indicative of a metabolic shift. To do this we customised a standard flow cytometer to excite and record fluorescence specifically from NADH and FAD, along with a method for automatically calculating the redox ratio of individual cells within large populations. These results could inform the design of novel probes and screening systems for the early detection of bladder cancer.
Resumo:
Five models delineating the person-situation fit controversy were developed and tested. Hypotheses were tested to determine the linkages between vision congruence, empowerment, locus of control, job satisfaction, organizational commitment, and employee performance. Vision was defined as a mental image of a possible and desirable future state of the organization.^ Data were collected from 213 employees in a major flower import company. Participants were from various organizational levels and ethnic backgrounds. The data collection procedure consisted of three parts. First, a profile analysis instrument was used which was developed employing a Q-sort based technique, to measure the vision congruence between the CEO and each employee. Second, employees completed a survey instrument which included scales measuring empowerment, locus of control, job satisfaction, organizational commitment, and social desirability. Third, supervisor performance ratings were gathered from employee files. Data analysis consisted of using Kendall's tau to measure the correlation between CEO's and each employee's vision. Path analyses were conducted using the EQS structural equation program to test five theoretical models for goodness-of-fit. Regression analysis was employed to test whether locus of control acted as a moderator variable.^ The results showed that vision congruence is significantly related to job satisfaction and employee commitment, and perceived empowerment acts as an intervening variable affecting employee outcomes. The study also found that people with an internal locus of control were more likely to feel empowered than were those with external beliefs. Implications of these findings for both researchers and practitioners are discussed and suggestions for future research directions are provided. ^
Resumo:
This dissertation documents the everyday lives and spaces of a population of youth typically constructed as out of place, and the broader urban context in which they are rendered as such. Thirty-three female and transgender street youth participated in the development of this youth-based participatory action research (YPAR) project utilizing geo-ethnographic methods, auto-photography, and archival research throughout a six-phase, eighteen-month research process in Bogotá, Colombia. ^ This dissertation details the participatory writing process that enabled the YPAR research team to destabilize dominant representations of both street girls and urban space and the participatory mapping process that enabled the development of a youth vision of the city through cartographic images. The maps display individual and aggregate spatial data indicating trends within and making comparisons between three subgroups of the research population according to nine spatial variables. These spatial data, coupled with photographic and ethnographic data, substantiate that street girls’ mobilities and activity spaces intersect with and are altered by state-sponsored urban renewal projects and paramilitary-led social cleansing killings, both efforts to clean up Bogotá by purging the city center of deviant populations and places. ^ Advancing an ethical approach to conducting research with excluded populations, this dissertation argues for the enactment of critical field praxis and care ethics within a YPAR framework to incorporate young people as principal research actors rather than merely voices represented in adultist academic discourse. Interjection of considerations of space, gender, and participation into the study of street youth produce new ways of envisioning the city and the role of young people in research. Instead of seeing the city from a panoptic view, Bogotá is revealed through the eyes of street youth who participated in the construction and feminist visualization of a new cartography and counter-map of the city grounded in embodied, situated praxis. This dissertation presents a socially responsible approach to conducting action-research with high-risk youth by documenting how street girls reclaim their right to the city on paper and in practice; through maps of their everyday exclusion in Bogotá followed by activism to fight against it.^
Resumo:
New information on possible resource value of sea floor manganese nodule deposits in the eastern north Pacific has been obtained by a study of records and collections of the 1972 Sea Scope Expedition. Nodule abundance (percent of sea floor covered) varies greatly, according to photographs from eight stations and data from other sources. All estimates considered reliable are plotted on a map of the region. Similar maps show the average content of Ni, Cu, Mn and Co at 89 stations from which three or more nodules were analyzed. Variations in nodule metal content at each station are shown graphically in an appendix, where data on nodule sizes are also given. Results of new analyses of 420 nodules from 93 stations for mn, fe, ni, cu, CO, and zn are listed in another appendix. Relatively high Ni + Cu content is restricted chiefly to four groups of stations in the equatorial region, where group averages are 1.86, 1.99, 2.47, and 2.55 weight-percent. Prepared for United States Department of the Interior, Bureau of Mines. Grant no. GO284008-02-MAS. - NTIS PB82-142571.
Resumo:
We propose a novel skeleton-based approach to gait recognition using our Skeleton Variance Image. The core of our approach consists of employing the screened Poisson equation to construct a family of smooth distance functions associated with a given shape. The screened Poisson distance function approximation nicely absorbs and is relatively stable to shape boundary perturbations which allows us to define a rough shape skeleton. We demonstrate how our Skeleton Variance Image is a powerful gait cycle descriptor leading to a significant improvement over the existing state of the art gait recognition rate.
Resumo:
Li-ion batteries have been widely used in electric vehicles, and battery internal state estimation plays an important role in the battery management system. However, it is technically challenging, in particular, for the estimation of the battery internal temperature and state-ofcharge (SOC), which are two key state variables affecting the battery performance. In this paper, a novel method is proposed for realtime simultaneous estimation of these two internal states, thus leading to a significantly improved battery model for realtime SOC estimation. To achieve this, a simplified battery thermoelectric model is firstly built, which couples a thermal submodel and an electrical submodel. The interactions between the battery thermal and electrical behaviours are captured, thus offering a comprehensive description of the battery thermal and electrical behaviour. To achieve more accurate internal state estimations, the model is trained by the simulation error minimization method, and model parameters are optimized by a hybrid optimization method combining a meta-heuristic algorithm and the least square approach. Further, timevarying model parameters under different heat dissipation conditions are considered, and a joint extended Kalman filter is used to simultaneously estimate both the battery internal states and time-varying model parameters in realtime. Experimental results based on the testing data of LiFePO4 batteries confirm the efficacy of the proposed method.
Resumo:
[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...
Resumo:
Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.
Resumo:
Hand detection on images has important applications on person activities recognition. This thesis focuses on PASCAL Visual Object Classes (VOC) system for hand detection. VOC has become a popular system for object detection, based on twenty common objects, and has been released with a successful deformable parts model in VOC2007. A hand detection on an image is made when the system gets a bounding box which overlaps with at least 50% of any ground truth bounding box for a hand on the image. The initial average precision of this detector is around 0.215 compared with a state-of-art of 0.104; however, color and frequency features for detected bounding boxes contain important information for re-scoring, and the average precision can be improved to 0.218 with these features. Results show that these features help on getting higher precision for low recall, even though the average precision is similar.