978 resultados para 020604 Quantum Optics
Resumo:
A physical random number generator based on the intrinsic randomness of quantum mechanics is described. The random events are realized by the choice of single photons between the two outputs of a beamsplitter. We present a simple device, which minimizes the impact of the photon counters’ noise, dead-time and after pulses.
Resumo:
Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.
Resumo:
The scaling of decoherence rates with qubit number N is studied for a simple model of a quantum computer in the situation where N is large. The two state qubits are localized around well-separated positions via trapping potentials and vibrational centre of mass motion of the qubits occurs. Coherent one and two qubit gating processes are controlled by external classical fields and facilitated by a cavity mode ancilla. Decoherence due to qubit coupling to a bath of spontaneous modes, cavity decay modes and to the vibrational modes is treated. A non-Markovian treatment of the short time behaviour of the fidelity is presented, and expressions for the characteristic decoherence time scales obtained for the case where the qubit/cavity mode ancilla is in a pure state and the baths are in thermal states. Specific results are given for the case where the cavity mode is in the vacuum state and gating processes are absent and the qubits are in (a) the Hadamard state (b) the GHZ state.
Resumo:
How useful is a quantum dynamical operation for quantum information processing? Motivated by this question, we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.
Resumo:
We define several quantitative measures of the robustness of a quantum gate against noise. Exact analytic expressions for the robustness against depolarizing noise are obtained for all bipartite unitary quantum gates, and it is found that the controlled-NOT gate is the most robust two-qubit quantum gate, in the sense that it is the quantum gate which can tolerate the most depolarizing noise and still generate entanglement. Our results enable us to place several analytic upper bounds on the value of the threshold for quantum computation, with the best bound in the most pessimistic error model being p(th)less than or equal to0.5.
Resumo:
We give a simple proof of a formula for the minimal time required to simulate a two-qubit unitary operation using a fixed two-qubit Hamiltonian together with fast local unitaries. We also note that a related lower bound holds for arbitrary n-qubit gates.
Resumo:
The field of linear optical quantum computation (LOQC) will soon need a repertoire of experimental milestones. We make progress in this direction by describing several experiments based on Grover's algorithm. These experiments range from a relatively simple implementation using only a single nonscalable controlled- NOT (CNOT) gate to the most complex, requiring two concatenated scalable CNOT gates, and thus form a useful set of early milestones for LOQC. We also give a complete description of basic LOQC using polarization-encoded qubits, making use of many simplifications to the original scheme of Knill, Laflamme, and Milburn [E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409, 46 (2001)].
Resumo:
We introduce a Gaussian quantum operator representation, using the most general possible multimode Gaussian operator basis. The representation unifies and substantially extends existing phase-space representations of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It enables first-principles dynamical or equilibrium calculations in quantum many-body systems, with quantum uncertainties appearing as dynamical objects. Any quadratic Liouville equation for the density operator results in a purely deterministic time evolution. Any cubic or quartic master equation can be treated using stochastic methods.
Resumo:
In this paper, we apply the canonical decomposition of two-qubit unitaries to find pulse schemes to control the proposed Kane quantum computer. We explicitly find pulse sequences for the controlled-NOT, swap, square root of swap, and controlled Z rotations. We analyze the speed and fidelity of these gates, both of which compare favorably to existing schemes. The pulse sequences presented in this paper are theoretically faster, with higher fidelity, and simpler. Any two-qubit gate may be easily found and implemented using similar pulse sequences. Numerical simulation is used to verify the accuracy of each pulse scheme.
Resumo:
We investigate multipartite entanglement in relation to the process of quantum state exchange. In particular, we consider such entanglement for a certain pure state involving two groups of N trapped atoms. The state, which can be produced via quantum state exchange, is analogous to the steady-state intracavity state of the subthreshold optical nondegenerate parametric amplifier. We show that, first, it possesses some 2N-way entanglement. Second, we place a lower bound on the amount of such entanglement in the state using a measure called the entanglement of minimum bipartite entropy.
Resumo:
We show that deterministic quantum computing with a single bit can determine whether the classical limit of a quantum system is chaotic or integrable using O(N) physical resources, where N is the dimension of the Hilbert space of the system under study. This is a square-root improvement over all known classical procedures. Our study relies strictly on the random matrix conjecture. We also present numerical results for the nonlinear kicked top.
Resumo:
The general idea of a stochastic gauge representation is introduced and compared with more traditional phase-space expansions, like the Wigner expansion. Stochastic gauges can be used to obtain an infinite class of positive-definite stochastic time-evolution equations, equivalent to master equations, for many systems including quantum time evolution. The method is illustrated with a variety of simple examples ranging from astrophysical molecular hydrogen production, through to the topical problem of Bose-Einstein condensation in an optical trap and the resulting quantum dynamics.
Resumo:
0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.
Resumo:
Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.