935 resultados para émission stimulée
Resumo:
We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010.
Resumo:
The sparse historical and anthropological research on romantic love in Africa south of the Sahara gives the impression that the phenomenon may merely be of marginal importance. Instead, the reasons for the apparent impossibility to write about love in Africa are largely rooted in its epistemology: Western stereotypes of a continent inhabited by tribal, atavistic people, barely modernised by colonialism or touched by globalisation which introduced romantic love to the world region have been in part responsible for this dearth of academic knowledge, as have recent identity politics and practical concerns that focused research in the area on sexuality. Here, the main argument is that the almost complete silence about love in Africa may be addressed by applying a more inclusive concept of love that embraces ideologies and practices hitherto neglected, such as polygyny, and that expands the one which has been developed by historians of the medieval and early modern periods. This, in turn, enriches the research on the history of love in Western societies.
Resumo:
Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun’s planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus’ atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency’s call for science themes for its large-class mission programme in 2013.
Resumo:
The magnetometer is a key instrument to the Solar Orbiter mission. The magnetic field is a fundamental parameter in any plasma: a precise and accurate measurement of the field is essential for understanding almost all aspects of plasma dynamics such as shocks and stream-stream interactions. Many of Solar Orbiter’s mission goals are focussed around the link between the Sun and space. A combination of in situ measurements by the magnetometer, remote measurements of solar magnetic fields and global modelling is required to determine this link and hence how the Sun affects interplanetary space. The magnetic field is typically one of the most precisely measured plasma parameters and is therefore the most commonly used measurement for studies of waves, turbulence and other small scale phenomena. It is also related to the coronal magnetic field which cannot be measured directly. Accurate knowledge of the magnetic field is essential for the calculation of fundamental plasma parameters such as the plasma beta, Alfvén speed and gyroperiod. We describe here the objectives and context of magnetic field measurements on Solar Orbiter and an instrument that fulfils those objectives as defined by the scientific requirements for the mission.
Resumo:
The proposed HI-LITE Explorer will investigate the global ion outflow from the high-latitude ionosphere, its relationship to auroral features, and the consequences of this outflow on magnetospheric processes. The unique nature of the HI-LITE Explorer images will allow temporal and spatial features of the global ion outflow to be determined. The mission's scientific motivation comes from the fundamental role high-latitude ionospheric ions play in the dynamics of the solar wind driven magnetospheric-ionospheric system. These outflows are a major source of plasma for the magnetosphere and it is believed they play an important role in the triggering of substorms. In addition this paper describes the HI-LITE spacecraft and instruments.
Resumo:
The Gaia Space Mission [Mignard, F., 2005. The three-dimensional universe with Gaia. ESA/SP-576; Perryman, M., 2005. The three-dimensional universe with Gaia. ESA/SP-576] will observe several transient events as supernovae, microlensing, gamma ray bursts and new Solar System objects. The satellite, due to its scanning law, will detect these events but will not be able to monitor them. So, to take these events into consideration and to perform further studies it is necessary to follow them with Earth-based observations. These observations could be efficiently done by a ground-based network of well-equipped telescopes scattered in both hemispheres. Here we focus our attention at the new Solar System objects to be discovered and observed by the Gaia satellite [Mignard, F., 2002. Observations of Solar System objects by Gaia I. Detection of NEOS. Astron. Astrophys. 393, 727] mainly asteroids, NEOs and comets. A dedicated ground-based network of telescopes as proposed by Thuillot [2005. The three-dimensional universe with Gaia. ESA/SP-576] will allow to monitor those events, to avoid losing them and to perform a quick characterization of some physical properties which will be important for the identification of these objects in further measurements by Gaia. We present in this paper, the beginning of the organization of a Latin-American ground-based network of telescopes and observers joining several institutions in Argentina, Bolivia, Brazil and other Latin-American countries aiming to contribute to the follow-up of Gaia science alerts for Solar System objects. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Trabalho apresentado na conferência Os Desafios das Bibliotecas Digitais realizado na Fundação Getulio Vargas em agosto 2014
Resumo:
The gravitational capture was initially used to understand the capture of planetary satellites. However, in the 90's decade, this phenomenon was applied in spacecraft trajectories. Belbruno and Miller studied missions in the Earth-Moon system that uses this technique to save fuel during the insertion of the spacecraft in its final orbit around the Moon. Using a parameter defined as twice the two-body energy of the planet-particle system, Yamakawa also studied the gravitational capture in the Earth-Moon system. In the present paper, this technique is used to study a mission that goes to the Neptune system and perform a gravitational capture in the satellite Triton. The results show direct and retrograde trajectories, for different values of the initial conditions.
Resumo:
The first Brazilian mission to an asteroid is being planned. The target is the asteroid 2001 SN263, which has a NEA orbit of class AMOR. Spectral analysis indicated that this is a C-type asteroid. This type of asteroids are dark and difficult to be studied from Earth. They hold clues of the initial stages of planetary formation and also the origin of water and life on Earth. In fact, radar data showed that 2001 SN263 is composed of three bodies with diameters of about 2.8 km, 1.1 km and 0.4 km. Therefore, the spacecraft will have the opportunity to explore three bodies on the same trip. The mission is scheduled to be launched in 2015, reaching the asteroid in 2018. It will be used a small spacecraft (150 kg) with 30 kg for the payload. The set of scientific instruments being considered to explore the target of this mission include an Imaging Camera, a Laser Rangefinder, an Infrared Spectrometer, a Synthetic Aperture Radar and a Mass Spectrometer. The main measurements to be made include the bulk properties (size, shape, mass, density, dynamics, spin state), the internal properties (structure, gravity field) and surface properties (mineralogy, morphology, elemental composition). The mission also opens an opportunity for some relevant experiments, not directly related to the target. Two such experiments will take benefit from being on board of the spacecraft along the journey to the asteroid system, which will take about three years. The first is an astrobiology experiment. The main goal of this experiment is to determine the viability of the microorganisms survival in extraterrestrial environments simulated in laboratory (chemical atmosphere, temperature, desiccation, vacuum, microgravity and radiation). The second experiment is a plasma package. The main objectives of this experiment are to study the structure and electrodynamics of plasma along the trajectory, the plasma instability processes and the density and temperature of plasma of solar wind origin along the trajectory and near the asteroids. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission and details of the payload that will be used and the scientific expectations. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
2001 SN263 is a triple system asteroid. Although it was discovery in 2001, in 2008 astronomical observation carried out by Arecibo observatory revealed that it is actually a system with three bodies orbiting each other. The main central body is an irregular object with a diameter about 2.8 km, while the other two are small objects with less than 1 km across. This system presents an orbital eccentricity of 0.47, with perihelion of 1.04 and aphelion of 1.99, which means that it can be considered as a Near Earth Object. This interesting system was chosen as the target for the Aster mission - first Brazilian space exploration undertaking. A small spacecraft with 150 kg of total mass, 30 kg of payload with 110 W available for the instruments, is scheduled to be launched in 2015, and in 2018 it will approach and will be put in orbit of the triple system. This spacecraft will use electric propulsion and in its payload it will carry image camera, laser rangefinder, infrared spectrometer, mass spectrometer, and experiments to be performed in its way to the asteroid. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission, including the transfer trajectories to be used, and details of buss and payload subsystems that are being developed and will be used. Copyright ©2010 by the International Astronautical Federation. All rights reserved.