937 resultados para wind and floating motion
Resumo:
The dynamics, shape, deformation, and orientation of red blood cells in microcirculation affect the rheology, flow resistance and transport properties of whole blood. This leads to important correlations of cellular and continuum scales. Furthermore, the dynamics of RBCs subject to different flow conditions and vessel geometries is relevant for both fundamental research and biomedical applications (e.g drug delivery). In this thesis, the behaviour of RBCs is investigated for different flow conditions via computer simulations. We use a combination of two mesoscopic particle-based simulation techniques, dissipative particle dynamics and smoothed dissipative particle dynamics. We focus on the microcapillary scale of several μm. At this scale, blood cannot be considered at the continuum but has to be studied at the cellular level. The connection between cellular motion and overall blood rheology will be investigated. Red blood cells are modelled as viscoelastic objects interacting hydrodynamically with a viscous fluid environment. The properties of the membrane, such as resistance against bending or shearing, are set to correspond to experimental values. Furthermore, thermal fluctuations are considered via random forces. Analyses corresponding to light scattering measurements are performed in order to compare to experiments and suggest for which situations this method is suitable. Static light scattering by red blood cells characterises their shape and allows comparison to objects such as spheres or cylinders, whose scattering signals have analytical solutions, in contrast to those of red blood cells. Dynamic light scattering by red blood cells is studied concerning its suitability to detect and analyse motion, deformation and membrane fluctuations. Dynamic light scattering analysis is performed for both diffusing and flowing cells. We find that scattering signals depend on various cell properties, thus allowing to distinguish different cells. The scattering of diffusing cells allows to draw conclusions on their bending rigidity via the effective diffusion coefficient. The scattering of flowing cells allows to draw conclusions on the shear rate via the scattering amplitude correlation. In flow, a RBC shows different shapes and dynamic states, depending on conditions such as confinement, physiological/pathological state and cell age. Here, two essential flow conditions are studied: simple shear flow and tube flow. Simple shear flow as a basic flow condition is part of any more complex flow. The velocity profile is linear and shear stress is homogeneous. In simple shear flow, we find a sequence of different cell shapes by increasing the shear rate. With increasing shear rate, we find rolling cells with cup shapes, trilobe shapes and quadrulobe shapes. This agrees with recent experiments. Furthermore, the impact of the initial orientation on the dynamics is studied. To study crowding and collective effects, systems with higher haematocrit are set up. Tube flow is an idealised model for the flow through cylindric microvessels. Without cell, a parabolic flow profile prevails. A single red blood cell is placed into the tube and subject to a Poiseuille profile. In tube flow, we find different cell shapes and dynamics depending on confinement, shear rate and cell properties. For strong confinements and high shear rates, we find parachute-like shapes. Although not perfectly symmetric, they are adjusted to the flow profile and maintain a stationary shape and orientation. For weak confinements and low shear rates, we find tumbling slippers that rotate and moderately change their shape. For weak confinements and high shear rates, we find tank-treading slippers that oscillate in a limited range of inclination angles and strongly change their shape. For the lowest shear rates, we find cells performing a snaking motion. Due to cell properties and resultant deformations, all shapes differ from hitherto descriptions, such as steady tank-treading or symmetric parachutes. We introduce phase diagrams to identify flow regimes for the different shapes and dynamics. Changing cell properties, the regime borders in the phase diagrams change. In both flow types, both the viscosity contrast and the choice of stress-free shape are important. For in vitro experiments, the solvent viscosity has often been higher than the cytosol viscosity, leading to a different pattern of dynamics, such as steady tank-treading. The stress-free state of a RBC, which is the state at zero shear stress, is still controversial, and computer simulations enable direct comparisons of possible candidates in equivalent flow conditions.
Resumo:
This paper presents MOTION, a modular on-line model for urban traffic signal control. It consists of a network and a local level and builds on enhanced traffic state estimation. Special consideration is given to the prioritization of public transit. MOTION provides possibilities for the interaction with integrated urban management systems.
Resumo:
It is located in eastern Uganda, the wetland system is characterized by open water that is clear with some emergent vegetation mainly of sedges and floating vegetation dominated by the day water lily Nymphaea sp and submerged water weeds. Some patches of Cyperus papyrus exist in areas with minimal agricultural encroachment. The main inflow into the Opeta system is through River Sironko.
Resumo:
Considerable interest in renewable energy has increased in recent years due to the concerns raised over the environmental impact of conventional energy sources and their price volatility. In particular, wind power has enjoyed a dramatic global growth in installed capacity over the past few decades. Nowadays, the advancement of wind turbine industry represents a challenge for several engineering areas, including materials science, computer science, aerodynamics, analytical design and analysis methods, testing and monitoring, and power electronics. In particular, the technological improvement of wind turbines is currently tied to the use of advanced design methodologies, allowing the designers to develop new and more efficient design concepts. Integrating mathematical optimization techniques into the multidisciplinary design of wind turbines constitutes a promising way to enhance the profitability of these devices. In the literature, wind turbine design optimization is typically performed deterministically. Deterministic optimizations do not consider any degree of randomness affecting the inputs of the system under consideration, and result, therefore, in an unique set of outputs. However, given the stochastic nature of the wind and the uncertainties associated, for instance, with wind turbine operating conditions or geometric tolerances, deterministically optimized designs may be inefficient. Therefore, one of the ways to further improve the design of modern wind turbines is to take into account the aforementioned sources of uncertainty in the optimization process, achieving robust configurations with minimal performance sensitivity to factors causing variability. The research work presented in this thesis deals with the development of a novel integrated multidisciplinary design framework for the robust aeroservoelastic design optimization of multi-megawatt horizontal axis wind turbine (HAWT) rotors, accounting for the stochastic variability related to the input variables. The design system is based on a multidisciplinary analysis module integrating several simulations tools needed to characterize the aeroservoelastic behavior of wind turbines, and determine their economical performance by means of the levelized cost of energy (LCOE). The reported design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity. The presented technology is applied to the design of a 5-MW HAWT rotor to be used at sites of wind power density class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing the mean and standard deviation of the LCOE. Airfoil shapes, spanwise distributions of blade chord and twist, internal structural layup and rotor speed are optimized concurrently, subject to an extensive set of structural and aeroelastic constraints. The effectiveness of the multidisciplinary and robust design framework is demonstrated by showing that the probabilistically designed turbine achieves more favorable probabilistic performance than those of the initial baseline turbine and a turbine designed deterministically.
Resumo:
A radar scatterometer operates by transmitting a pulse of microwave energy toward the ocean's surface and measuring the normalized (per-unit-surface) radar backscatter coefficient (σ°). The primary application of scatterometry is the measurement of near-surface ocean winds. By combining σ° measurements from different azimuth angles, the 10 m vector wind can be determined through a Geophysical Model Function (GMF), which relates wind and backscatter. This paper proposes a mission concept for the measurement of both oceanic winds and surface currents, which makes full use of earlier C-band radar remote sensing experience. For the determination of ocean currents, in particular, the novel idea of using two chirps of opposite slope is introduced. The fundamental processing steps required to retrieve surface currents are given together with their associated accuracies. A detailed description of the mission proposal and comparisons between real and retrieved surface currents are presented. The proposed ocean Doppler scatterometer can be used to generate global surface ocean current maps with accuracies better than 0.2 m/s at a spatial resolution better than 25 km (i.e., 12.5 km spatial sampling) on a daily basis. These maps will allow gaining some insights on the upper ocean mesoscale dynamics. The work lies at a frontier, given that the present inability to measure ocean currents from space in a consistent and synoptic manner represents one of the greatest weaknesses in ocean remote sensing.
Resumo:
Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task.
Resumo:
The Persian Gulf (PG) is a semi-enclosed shallow sea which is connected to open ocean through the Strait of Hormuz. Thermocline as a suddenly decrease of temperature in subsurface layer in water column leading to stratification happens in the PG seasonally. The forcing comprise tide, river inflow, solar radiation, evaporation, northwesterly wind and water exchange with the Oman Sea that influence on this process. In this research, analysis of the field data and a numerical (Princeton Ocean Model, POM) study on the summer thermocline development in the PG are presented. The Mt. Mitchell cruise 1992 salinity and temperature observations show that the thermocline is effectively removed due to strong wind mixing and lower solar radiation in winter but is gradually formed and developed during spring and summer; in fact as a result of an increase in vertical convection through the water in winter, vertical gradient of temperature is decreased and thermocline is effectively removed. Thermocline development that evolves from east to west is studied using numerical simulation and some existing observations. Results show that as the northwesterly wind in winter, at summer transition period, weakens the fresher inflow from Oman Sea, solar radiation increases in this time interval; such these factors have been caused the thermocline to be formed and developed from winter to summer even over the northwestern part of the PG. The model results show that for the more realistic monthly averaged wind experiments the thermocline develops as is indicated by summer observations. The formation of thermocline also seems to decrease the dissolved oxygen in water column due to lack of mixing as a result of induced stratification. Over most of PG the temperature difference between surface and subsurface increases exponentially from March until May. Similar variations for salinity differences are also predicted, although with smaller values than observed. Indeed thermocline development happens more rapidly in the Persian Gulf from spring to summer. Vertical difference of temperature increases to 9 centigrade degrees in some parts of the case study zone from surface to bottom in summer. Correlation coefficients of temperature and salinity between the model results and measurements have been obtained 0.85 and 0.8 respectively. The rate of thermcline development was found to be between 0.1 to 0.2 meter per day in the Persian Gulf during the 6 months from winter to early summer. Also it is resulted from the used model that turbulence kinetic energy increases in the northwestern part of the PG from winter to early summer that could be due to increase in internal waves activities and stability intensified through water column during this time.
Resumo:
Liquid-solid interactions become important as dimensions approach mciro/nano-scale. This dissertation focuses on liquid-solid interactions in two distinct applications: capillary driven self-assembly of thin foils into 3D structures, and droplet wetting of hydrophobic micropatterned surfaces. The phenomenon of self-assembly of complex structures is common in biological systems. Examples include self-assembly of proteins into macromolecular structures and self-assembly of lipid bilayer membranes. The principles governing this phenomenon have been applied to induce self-assembly of millimeter scale Si thin films into spherical and other 3D structures, which are then integrated into light-trapping photovoltaic (PV) devices. Motivated by this application, we present a generalized analytical study of the self-folding of thin plates into deterministic 3D shapes, through fluid-solid interactions, to be used as PV devices. This study consists of developing a model using beam theory, which incorporates the two competing components — a capillary force that promotes folding and the bending rigidity of the foil that resists folding into a 3D structure. Through an equivalence argument of thin foils of different geometry, an effective folding parameter, which uniquely characterizes the driving force for folding, has been identified. A criterion for spontaneous folding of an arbitrarily shaped 2D foil, based on the effective folding parameter, is thus established. Measurements from experiments using different materials and predictions from the model match well, validating the assumptions used in the analysis. As an alternative to the mechanics model approach, the minimization of the total free energy is employed to investigate the interactions between a fluid droplet and a flexible thin film. A 2D energy functional is proposed, comprising the surface energy of the fluid, bending energy of the thin film and gravitational energy of the fluid. Through simulations with Surface Evolver, the shapes of the droplet and the thin film at equilibrium are obtained. A critical thin film length necessary for complete enclosure of the fluid droplet, and hence successful self-assembly into a PV device, is determined and compared with the experimental results and mechanics model predictions. The results from the modeling and energy approaches and the experiments are all consistent. Superhydrophobic surfaces, which have unique properties including self-cleaning and water repelling are desired in many applications. One excellent example in nature is the lotus leaf. To fabricate these surfaces, well designed micro/nano- surface structures are often employed. In this research, we fabricate superhydrophobic micropatterned Polydimethylsiloxane (PDMS) surfaces composed of micropillars of various sizes and arrangements by means of soft lithography. Both anisotropic surfaces, consisting of parallel grooves and cylindrical pillars in rectangular lattices, and isotropic surfaces, consisting of cylindrical pillars in square and hexagonal lattices, are considered. A novel technique is proposed to image the contact line (CL) of the droplet on the hydrophobic surface. This technique provides a new approach to distinguish between partial and complete wetting. The contact area between droplet and microtextured surface is then measured for a droplet in the Cassie state, which is a state of partial wetting. The results show that although the droplet is in the Cassie state, the contact area does not necessarily follow Cassie model predictions. Moreover, the CL is not circular, and is affected by the micropatterns, in both isotropic and anisotropic cases. Thus, it is suggested that along with the contact angle — the typical parameter reported in literature quantifying wetting, the size and shape of the contact area should also be presented. This technique is employed to investigate the evolution of the CL on a hydrophobic micropatterned surface in the cases of: a single droplet impacting the micropatterned surface, two droplets coalescing on micropillars, and a receding droplet resting on the micropatterned surface. Another parameter which quantifies hydrophobicity is the contact angle hysteresis (CAH), which indicates the resistance of the surface to the sliding of a droplet with a given volume. The conventional methods of using advancing and receding angles or tilting stage to measure the resistance of the micropatterned surface are indirect, without mentioning the inaccuracy due to the discrete and stepwise motion of the CL on micropillars. A micronewton force sensor is utilized to directly measure the resisting force by dragging a droplet on a microtextured surface. Together with the proposed imaging technique, the evolution of the CL during sliding is also explored. It is found that, at the onset of sliding, the CL behaves as a linear elastic solid with a constant stiffness. Afterwards, the force first increases and then decreases and reaches a steady state, accompanied with periodic oscillations due to regular pinning and depinning of the CL. Both the maximum and steady state forces are primarily dependent on area fractions of the micropatterned surfaces in our experiment. The resisting force is found to be proportional to the number of pillars which pin the CL at the trailing edge, validating the assumption that the resistance mainly arises from the CL pinning at the trailing edge. In each pinning-and-depinning cycle during the steady state, the CL also shows linear elastic behavior but with a lower stiffness. The force variation and energy dissipation involved can also be determined. This novel method of measuring the resistance of the micropatterned surface elucidates the dependence on CL pinning and provides more insight into the mechanisms of CAH.
Resumo:
There are various tools for monitoring the concentration of pollutants on aquatic ecosystems. Today these studies are based on biological monitoring and biomarkers. The aim of this study was to measure the concentration of the acetylcholinesterase (AChE), glutathione S-transferase and catalase as biomarkers of heavy metal contamination in pearl oyster Pinctada radiata and their mechanism in aquatic ecosystems. Heavy metals lead, cadmium and nickel were measured in soft tissue and studied stations in four seasons. Samples were collected seasonally in Lavan stations, Hendurabi and Nakhilo (in the northern Persian Gulf) from spring 2013 to winter of that year by scuba diving. Pearl oysters are divided according to their shells size; shells separated from soft tissues and were transferred to the laboratory for analysis of heavy metals and enzymes. Moopam standard method for were used for measuring the concentration of heavy metals and for analyzing tissue concentrations of glutathione S-transferase in Clam the method recommended by Habig et al in 1974 were used. For measuring acetylcholinesterase Ellman method were used. Catalase contamination in pearl oyster in the supernatant obtained from the study based on the method homogeate soft tissue of mussels (Abei, 1974) was evaluated. The results showed that the concentration of lead has significant difference in sediments station, the concentration of lead in Lavan is significantly higher than the other two stations, This could be due to the movement of tanker, boats and floating refueling and with a considerable amount of wastewater containing oil and Petroleum into the water, and also due to precipitation and industrial discharges the lead in the region is increasing, land-disposed sewage sludge, has large concentrations of lead. Compare the results of this study with standards related and other similar studies at the regional and international level showed that pollutant concentration of heavy metals in all cases significantly less than all the standards and guide values associated. And also compared to other world research results have been far less than others, Being Less of the conclusion given in this research according that nickel is one of the indicators of oil pollution in the study area and emissions have been relatively low of oil. The concentration of acetylcholinesterase at several stations, in large and small sizes and in the seasons had no significant difference. Variations of catalase, and glutathione S-transferase were almost similar to each other and parameters, station and seasons were significantly different in the concentrations of these enzymes. The effects and interaction between various parameters indicate that following parameters has impact on the concentration of catalase and glutathione S-transferase. Stations; Seasonal changes in antioxidant enzymes related to (assuming a constant in salinity and oxygen) to age, reproductive cycle, availability of food and water temperature. With increasing temperature at warm season, antioxidant enzymes were increase, with increasing temperature and abundance of food in the environment the amount of antioxidant enzymes may increase. The presence of the enzyme concentration may indicate that the higher levels of the enzyme to eliminate ROS activities to be any healthier situation. At the time of gonads maturation and spawning season catalase activity increases. This study also indicates that catalase was significantly higher in the warm season. Due to low pollutants of heavy metals in the study area, a lower level of contaminants were observed in shellfish tissue incidents of international standards and strong correlation between the amount of heavy metal contamination in pearl oyster tissue and enzymes was not observed. Therefore, we can say that the pearl oyster remains in a healthy condition and the amount of enzyme is normal.
Resumo:
Aircraft altimeter and in situ measurements are used to examine relationships between altimeter backscatter and the magnitude of near-surface wind and friction velocities. Comparison of altimeter radar cross section with wind speed is made through the modified Chelton-Wentz algorithm. Improved agreement is found after correcting 10-m winds for both surface current and atmospheric stability. An altimeter friction velocity algorithm is derived based on the wind speed model and an open-ocean drag coefficient. Close agreement between altimeter- and in situ-derived friction velocities is found. For this dataset, quality of the altimeter inversion to surface friction velocity is comparable to that for adjusted winds and clearly better than the inversion to true 10-m wind speed.
Resumo:
Background: The prevalence of Diabetes mellitus (DM) is on a rise in sub-Saharan Africa and will more than double by 2025. Cardiovascular disease (CVD) accounts for up to 2/3 of all deaths in the diabetic population. Of all the CVD deaths in DM, 3/4 occur in sub Saharan Africa (SSA). Non invasive identification of cardiac abnormalities, such as Left Ventricular Hypertrophy (LVH), diastolic and systolic dysfunction, is not part of diabetes complications surveillance programs in Uganda and there is limited data on this problem. This study sought to determine the prevalence, types and factors associated with echocardiographic abnormalities among newly diagnosed diabetic patients at Mulago National referral hospital in Uganda. Methods: In this cross sectional study conducted between June 2014 and December 2014, we recruited 202 newly diagnosed adult diabetic patients. Information on patients\' socio-demographics, bio-physical profile, biochemical testing and echocardiographic findings was obtained for all the participants using a pre-tested questionnaire. An abnormal echocardiogram in this study was defined as the presence of LVH, diastolic and/or systolic dysfunction and wall motion abnormality. Bivariate and multivariate logistic regression analyses were used to investigate the association of several parameters with echocardiographic abnormalities. Results: Of the 202 patients recruited, males were 102(50.5%) and the mean age was 46±15 years. Majority of patients had type 2 DM, 156(77.2%) and type 1 DM, 41(20.3%) with mean HbA1C of 13.9±5.3%. Mean duration of diabetes was 2 months. The prevalence of an abnormal echocardiogram was 67.8 % (95% CI 60%-74%). Diastolic dysfunction, systolic dysfunction, LVH and wall motion abnormalities were present in 55.0%, 21.8%, 19.3% and 4.0% of all the participants respectively. In bivariate logistic regression analysis, the factors associated with an abnormal echocardiogram were age (OR 1.09 [95% CI 1.06–1.12], P <0.0001), type 2 DM (OR 5.8[95% CI 2.77-12.07], P<0.0001), hypertension (OR 2.64[95% CI 1.44-4.85], P=0.002), obesity (OR 3.51[955 CI 1.25-9.84], P=0.017 and increased waist circumference (OR 1.02[95% CI 1.00-1.04], P=0.024. On Multiple logistic regression analysis, age was the only factor associated with an abnormal echocardiogram (OR 1.09[95%CI 1.05-1.15], P<0.0001). Conclusion: Echocardiographic abnormalities were common among newly diagnosed adults with DM. Traditional CVD risk factors were associated with an abnormal echocardiogram in this patient population. Due to a high prevalence of echocardiographic abnormalities among newly diagnosed diabetics, we recommend screening for cardiac disease especially in patients who present with traditional CVD risk factors. This will facilitate early diagnosis, management and hence better patient outcomes.
Resumo:
The first part of this study examines the relative roles of frontogenesis and tropopause undulation in determining the intensity and structural changes of Hurricane Sandy (2012) using a high-resolution cloud-resolving model. A 138-h simulation reproduces Sandy’s four distinct development stages: (i) rapid intensification, (ii) weakening, (iii) steady maximum surface wind but with large continued sea-level pressure (SLP) falls, and (iv) re-intensification. Results show typical correlations between intensity changes, sea-surface temperature and vertical wind shear during the first two stages. The large SLP falls during the last two stages are mostly caused by Sandy’s moving northward into lower-tropopause regions associated with an eastward-propagating midlatitude trough, where the associated lower-stratospheric warm air wraps into the storm and its surrounding areas. The steady maximum surface wind occurs because of the widespread SLP falls with weak pressure gradients lacking significant inward advection of absolute angular momentum (AAM). Meanwhile, there is a continuous frontogenesis in the outer region during the last three stages. Cyclonic inward advection of AAM along each frontal rainband accounts for the continued expansion of the tropical-storm-force wind and structural changes, while deep convection in the eyewall and merging of the final two survived frontal rainbands generate a spiraling jet in Sandy’s northwestern quadrant, leading to its re-intensification prior to landfall. The physical, kinematic and dynamic aspects of an upper-level outflow layer and its possible impact on the re-intensification of Sandy are examined in the second part of this study. Above the outflow layer isentropes are tilted downward with radius as a result of the development of deep convection and an approaching upper-level trough, causing weak subsidence. Its maximum outward radial velocity is located above the cloud top, so the outflow channel experiences cloud-induced long-wave cooling. Because Sandy has two distinct convective regions (an eyewall and a frontal rainband), it has multiple outflow layers, with the eyewall’s outflow layer located above that of the frontal rainband. During the re-intensification stage, the eyewall’s outflow layer interacts with a jet stream ahead of the upper-level trough axis. Because of the presence of inertial instability on the anticyclonic side of the jet stream and symmetric instability in the inner region of the outflow layer, Sandy’s secondary circulation intensifies. Its re-intensification ceases when these instabilities disappear. The relationship between the intensity of the secondary circulation and dynamic instabilities of the outflow layer suggests that the re-intensification occurs in response to these instabilities. Additionally, it is verified that the long-wave cooling in the outflow layer helps induce symmetric instability by reducing static stability.
Resumo:
Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.
Resumo:
Lithium Ion (Li-Ion) batteries have got attention in recent decades because of their undisputable advantages over other types of batteries. They are used in so many our devices which we need in our daily life such as cell phones, lap top computers, cameras, and so many electronic devices. They also are being used in smart grids technology, stand-alone wind and solar systems, Hybrid Electric Vehicles (HEV), and Plug in Hybrid Electric Vehicles (PHEV). Despite the rapid increase in the use of Lit-ion batteries, the existence of limited battery models also inadequate and very complex models developed by chemists is the lack of useful models a significant matter. A battery management system (BMS) aims to optimize the use of the battery, making the whole system more reliable, durable and cost effective. Perhaps the most important function of the BMS is to provide an estimate of the State of Charge (SOC). SOC is the ratio of available ampere-hour (Ah) in the battery to the total Ah of a fully charged battery. The Open Circuit Voltage (OCV) of a fully relaxed battery has an approximate one-to-one relationship with the SOC. Therefore, if this voltage is known, the SOC can be found. However, the relaxed OCV can only be measured when the battery is relaxed and the internal battery chemistry has reached equilibrium. This thesis focuses on Li-ion battery cell modelling and SOC estimation. In particular, the thesis, introduces a simple but comprehensive model for the battery and a novel on-line, accurate and fast SOC estimation algorithm for the primary purpose of use in electric and hybrid-electric vehicles, and microgrid systems. The thesis aims to (i) form a baseline characterization for dynamic modeling; (ii) provide a tool for use in state-of-charge estimation. The proposed modelling and SOC estimation schemes are validated through comprehensive simulation and experimental results.