960 resultados para whole systems thinking
Resumo:
Transition P Systems are a parallel and distributed computational model based on the notion of the cellular membrane structure. Each membrane determines a region that encloses a multiset of objects and evolution rules. Transition P Systems evolve through transitions between two consecutive configurations that are determined by the membrane structure and multisets present inside membranes. Moreover, transitions between two consecutive configurations are provided by an exhaustive non-deterministic and parallel application of active evolution rules subset inside each membrane of the P system. But, to establish the active evolution rules subset, it is required the previous calculation of useful and applicable rules. Hence, computation of applicable evolution rules subset is critical for the whole evolution process efficiency, because it is performed in parallel inside each membrane in every evolution step. The work presented here shows advantages of incorporating decision trees in the evolution rules applicability algorithm. In order to it, necessary formalizations will be presented to consider this as a classification problem, the method to obtain the necessary decision tree automatically generated and the new algorithm for applicability based on it.
Resumo:
An automated cognitive approach for the design of Information Systems is presented. It is supposed to be used at the very beginning of the design process, between the stages of requirements determination and analysis, including the stage of analysis. In the context of the approach used either UML or ERD notations may be used for model representation. The approach provides the opportunity of using natural language text documents as a source of knowledge for automated problem domain model generation. It also simplifies the process of modelling by assisting the human user during the whole period of working upon the model (using UML or ERD notations).
Resumo:
Systems analysis (SA) is widely used in complex and vague problem solving. Initial stages of SA are analysis of problems and purposes to obtain problems/purposes of smaller complexity and vagueness that are combined into hierarchical structures of problems(SP)/purposes(PS). Managers have to be sure the PS and the purpose realizing system (PRS) that can achieve the PS-purposes are adequate to the problem to be solved. However, usually SP/PS are not substantiated well enough, because their development is based on a collective expertise in which logic of natural language and expert estimation methods are used. That is why scientific foundations of SA are not supposed to have been completely formed. The structure-and-purpose approach to SA based on a logic-and-linguistic simulation of problems/purposes analysis is a step towards formalization of the initial stages of SA to improve adequacy of their results, and also towards increasing quality of SA as a whole. Managers of industrial organizing systems using the approach eliminate logical errors in SP/PS at early stages of planning and so they will be able to find better decisions of complex and vague problems.
Resumo:
The aim of this study is to evaluate the application of ensemble averaging to the analysis of electromyography recordings under whole body vibratory stimulation. Recordings from Rectus Femoris, collected during vibratory stimulation at different frequencies, are used. Each signal is subdivided in intervals, which time duration is related to the vibration frequency. Finally the average of the segmented intervals is performed. By using this method for the majority of the recordings the periodic components emerge. The autocorrelation of few seconds of signals confirms the presence of a pseudosinusoidal components strictly related to the soft tissues oscillations caused by the mechanical waves. © 2014 IEEE.
Resumo:
Beginning teachers in the field of English Language Arts and Reading are responsible for providing literacy instruction to students. Teachers need a broad background in teaching reading, writing, listening, speaking, and viewing, as well as critical thinking. In secondary schools in particular, beginning English Language Arts and Reading teachers are also faced with the challenge of preparing students to be proficient enough readers and writers to meet required State standards. Beginning teachers must navigate compelling challenges that exist during the first years of teaching. The school support systems available to new teachers are an integral part of their educational development. ^ This qualitative study was conceptualized as an in-depth examination of the experiences and perceptions of eight beginning teachers. They represented different racial/ethnic groups, attended different teacher preparation programs, and taught in different school cultures. The data were collected through formal and informal interviews and classroom observations. A qualitative system of data analysis was used to examine the patterns relating to the interrelationship between teacher preparation programs and school support systems. ^ The experiences of the beginning teachers in this study indicated that teacher education programs should provide preservice teachers with a critical knowledge base for teaching literature, language, and composition. A liberal arts background in English, followed by an extensive program focusing on pedagogy, seems to provide a thorough level of curriculum and instructional practices needed for teaching in 21st century classrooms. The data further suggested that a school support system should pair beginning teachers with mentor teachers and provide a caring, professional environment that seeks to nurture the teacher as she/he develops during the first years of teaching. ^
Resumo:
The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^
Resumo:
This research aimed at developing a research framework for the emerging field of enterprise systems engineering (ESE). The framework consists of an ESE definition, an ESE classification scheme, and an ESE process. This study views an enterprise as a system that creates value for its customers. Thus, developing the framework made use of system theory and IDEF methodologies. This study defined ESE as an engineering discipline that develops and applies systems theory and engineering techniques to specification, analysis, design, and implementation of an enterprise for its life cycle. The proposed ESE classification scheme breaks down an enterprise system into four elements. They are work, resources, decision, and information. Each enterprise element is specified with four system facets: strategy, competency, capacity, and structure. Each element-facet combination is subject to the engineering process of specification, analysis, design, and implementation, to achieve its pre-specified performance with respect to cost, time, quality, and benefit to the enterprise. This framework is intended for identifying research voids in the ESE discipline. It also helps to apply engineering and systems tools to this emerging field. It harnesses the relationships among various enterprise aspects and bridges the gap between engineering and management practices in an enterprise. The proposed ESE process is generic. It consists of a hierarchy of engineering activities presented in an IDEF0 model. Each activity is defined with its input, output, constraints, and mechanisms. The output of an ESE effort can be a partial or whole enterprise system design for its physical, managerial, and/or informational layers. The proposed ESE process is applicable to a new enterprise system design or an engineering change in an existing system. The long-term goal of this study aims at development of a scientific foundation for ESE research and development.
Resumo:
High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.
Resumo:
Florida is the second leading horticulture state in the United States with a total annual industry sale of over $12 Billion. Due to its competitive nature, agricultural plant production represents an extremely intensive practice with large amounts of water and fertilizer usage. Agrochemical and water management are vital for efficient functioning of any agricultural enterprise, and the subsequent nutrient loading from such agricultural practices has been a concern for environmentalists. A thorough understanding of the agrochemical and the soil amendments used in these agricultural systems is of special interest as contamination of soils can cause surface and groundwater pollution leading to ecosystem toxicity. The presence of fragile ecosystems such as the Everglades, Biscayne Bay and Big Cypress near enterprises that use such agricultural systems makes the whole issue even more imminent. Although significant research has been conducted with soils and soil mix, there is no acceptable method for determining the hydraulic properties of mixtures that have been subjected to organic and inorganic soil amendments. Hydro-physical characterization of such mixtures can facilitate the understanding of water retention and permeation characteristics of the commonly used mix which can further allow modeling of soil water interactions. The objective of this study was to characterize some of the locally and commercially available plant growth mixtures for their hydro-physical properties and develop mathematical models to correlate these acquired basic properties to the hydraulic conductivity of the mixture. The objective was also to model the response patterns of soil amendments present in those mixtures to different water and fertilizer use scenarios using the characterized hydro-physical properties with the help of Everglades-Agro-Hydrology Model. The presence of organic amendments helps the mixtures retain more water while the inorganic amendments tend to adsorb more nutrients due to their high surface area. The results of these types of characterization can provide a scientific basis for understanding the non-point source water pollution from horticulture production systems and assist in the development of the best management practices for the operation of environmentally sustainable agricultural enterprise
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Resumo:
This research aimed at developing a research framework for the emerging field of enterprise systems engineering (ESE). The framework consists of an ESE definition, an ESE classification scheme, and an ESE process. This study views an enterprise as a system that creates value for its customers. Thus, developing the framework made use of system theory and IDEF methodologies. This study defined ESE as an engineering discipline that develops and applies systems theory and engineering techniques to specification, analysis, design, and implementation of an enterprise for its life cycle. The proposed ESE classification scheme breaks down an enterprise system into four elements. They are work, resources, decision, and information. Each enterprise element is specified with four system facets: strategy, competency, capacity, and structure. Each element-facet combination is subject to the engineering process of specification, analysis, design, and implementation, to achieve its pre-specified performance with respect to cost, time, quality, and benefit to the enterprise. This framework is intended for identifying research voids in the ESE discipline. It also helps to apply engineering and systems tools to this emerging field. It harnesses the relationships among various enterprise aspects and bridges the gap between engineering and management practices in an enterprise. The proposed ESE process is generic. It consists of a hierarchy of engineering activities presented in an IDEF0 model. Each activity is defined with its input, output, constraints, and mechanisms. The output of an ESE effort can be a partial or whole enterprise system design for its physical, managerial, and/or informational layers. The proposed ESE process is applicable to a new enterprise system design or an engineering change in an existing system. The long-term goal of this study aims at development of a scientific foundation for ESE research and development.
Resumo:
Adaptation is an important requirement for mobile applications due to the varying levels of resource availability that characterizes mobile environments. However without proper control, multiple applications can each adapt independently in response to a range of different adaptive stimuli, causing conflicts or sub optimal performance. In this thesis we presented a framework, which enables multiple adaptation mechanisms to coexist on one platform. The key component of this framework was the 'Policy Server', which has all the system policies and governs the rules for adaptation. We also simulated our framework and subjected it to various adaptation scenarios to demonstrate the working of the system as a whole. With the help of the simulation it was shown that our framework enables seamless adaptation of multiple applications.
Resumo:
In my thesis I argue for the use of system designs that: a) open access to a variety of users and allow for collaboration and idea exchange, while at the same time, b) are designed to motivate and engage users. To exemplify my proposed systems design, I created an interactive and open digital history project focused on Romanian culture and identity during Communism, from 1947, when the Communist Party took power by forcing the King to abdicate, until the revolution in 1989, which marked the end of Communism in Romania (Gilberg, 1990, Boia, 2014). In my project, I present the possibility to recreate Habermas’ notion of public sphere and “the unforced force of the better argument” (Habermas, 1989) and Dewey’s (2004) understanding of democracy as a mode of associated living imbued of the spirit of inquiry within contemporary digital history projects. Second, I outline system designs that motivate and engage users, by satisfying the basic psychological needs outlined in Ryan and Deci’s (2000) self-determination theory: autonomy, competence, and relatedness. Two more concepts are included to complete the proposed digital history project design: presence (Ryan, Rigby, & Przybylski, 2006) and learner hero (Rigby & Przybylski, 2009).
Resumo:
The Family Model – A transgenerational approach to mental health in families This workshop will provide an overview on The Family Model (TFM) and its use in promoting and facilitating a transgenerational family focus in Mental Health services, over the past 10 - 15 years. Each of the speakers will address a different perspective, including service user/consumer, clinical practice, education & training, research and policy. Adrian Falkov (chair) will provide an overview of TFM to set the scene and a ‘policy to practice’ perspective, based on use of TFM in Australia. Author: Heide Lloyd. The Family Model A personal (consumer/patient) perspective | United Kingdom Heide will provide a description of her experiences as a child, adult, parent & grandparent, using TFM as the structure around which to ‘weave’ her story and demonstrate how TFM has assisted her in understanding the impact of symptoms on her & family and how she has used it in her management of symptoms and recovery (personal perspective). The Family Model Education & training perspective Marie Diggins | United Kingdom PhD Bente Weimand | Norway Authors: Marie Diggins | United Kingdom PhD Bente Weimand | Norway This combined (UK & Norwegian) presentation will cover historical background to TFM and its use in eLearning (the Social Care Institute for Excellence)and a number of other UK initiatives, together with a description of the postgraduate masters course at the University Oslo/Akershus, using TFM. The Family Model A research perspective PhD Anne Grant | Northern Ireland Author: PhD Anne Grant | Ireland Anne Grant will describe how she used TFM as the theoretical framework for her PhD looking at family focused (nursing) practice in Ireland. The Family Model A service systems perspective Mary Donaghy | Northern Ireland Authors: PhD Adrian Falkov | Australia Mary Donaghy | N Ireland Mary Donaghy will discuss how TFM has been used to support & facilitate a cross service ‘whole of system’ change program in Belfast (NI) to achieve improved family focused practice. She will demonstrate its utility in achieving a broader approach to service design, delivery and evaluation.
Resumo:
Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.