953 resultados para white-beam synchrotron radiation topography
Resumo:
The degradable polymers polylactide (PLA) and polylactide-co-glycolide (PLGA) have found widespread use in modern medical practice. However, their slow degradation rates and tendency to lose strength before mass have caused problems. The aim of this study was to ascertain whether treatment with e-beam radiation could address these problems. Samples of PLA and PLGA were manufactured and placed in layered stacks, 8.1 mm deep, before exposure to 50 kGy of e-beam radiation from a 1.5 MeV accelerator. Gel permeation chromatography testing showed that the molecular weight of both materials was depth-dependent following irradiation, with samples nearest to the treated surface showing a reduced molecular weight. Samples deeper than 5.4 mm were unaffected. Computer modeling of the transmission of a 1.5 MeV e-beam in these materials corresponded well with these findings. An accelerated mass-loss study of the treated materials found that the samples nearest the irradiated surface initiated mass loss earlier, and at later stages showed an increased percentage mass loss. It was concluded that e-beam radiation could modify the degradation of bioabsorbable polymers to potentially improve their performance in medical devices, specifically for improved orthopedic fixation.
Resumo:
Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.
Resumo:
Purpose: To evaluate the clinical and histological side effects of a prototype stereotactic radiotherapy system delivering microcollimated external beam radiation through pars plana in porcine eyes.
Methods: Five Yucatan mini-swine (10 eyes) were randomized to five treatment groups. Eight eyes were dosed with X-ray radiation on Day 1, and two eyes served as untreated controls. Treated eyes received doses up to 60 Gy to the retina and up to 130 Gy to the sclera using single or overlapping beams. The treatment beams were highly collimated such that the diameter was approximately 2.5 mm on the sclera and 3 mm on the retinal surface. Fundus photography, fluorescein angiography (FA), and spectral domain optical coherence tomography (SD-OCT) were obtained on days 7, 30, 60, and 110. Images were examined by a masked grader and evaluated for abnormalities. Animals were sacrificed on day 111 and gross and histopathological analysis was conducted.
Results: Histological and gross changes to eye structures including conjunctiva and lens were minimal at all doses. Fundus, FA, and SD-OCT of the targeted region failed to disclose any abnormality in the control or 21 Gy treated animals. In the 42 and 60 Gy animals, hypopigmented spots were noted after treatment on clinical exam, and corresponding hyperfluorescent staining was seen in late frames. No evidence of choroidal hypoperfusion was seen. The histological specimens from the 60 Gy animals showed photoreceptor loss and displacement of cone nuclei.
Conclusion: Transcleral stereotactic radiation dosing in porcine eyes can be accomplished with no significant adverse events as doses less than 42 Gy.
Resumo:
Here is detailed a novel and low-cost experimental method for high-throughput automated fluid sample irradiation. The sample is delivered via syringe pump to a nozzle, where it is expressed in the form of a hanging droplet into the path of a beam of ionising radiation. The dose delivery is controlled by an upstream lead shutter, which allows the beam to reach the droplet for a user defined period of time. The droplet is then further expressed after irradiation until it falls into one well of a standard microplate. The entire system is automated and can be operated remotely using software designed in-house, allowing for use in environments deemed unsafe for the user (synchrotron beamlines, for example). Depending on the number of wells in the microplate, several droplets can be irradiated before any human interaction is necessary, and the user may choose up to 10 samples per microplate using an array of identical syringe pumps, the design of which is described here. The nozzles consistently produce droplets of 25.1 ± 0.5 μl.
Resumo:
Molecular phylogenetic hypotheses of species-rich lineages in regions where geological history can be reliably inferred may provide insights into the scale of processes driving diversification. Here we sample all extant or recently extinct white-eye (Zosterops) taxa of the southwest Indian Ocean, combined with samples from all principal continental lineages. Results support a high dispersal capability, with at least two independent continental sources for white-eyes of the region. An early (within 1.8 million years ago) expansion into the Indian Ocean may have originated either from Asia or Africa; the three resulting lineages show a disparate distribution consistent with considerable extinction following their arrival. Africa is supported as the origin of a later expansion into the region (within 1.2 million years ago). On two islands, a pair of Zosterops species derived from independent immigrations into the Indian Ocean co-occur or may have formerly co-occurred, providing strong support for their origin by double-island colonization rather than within-island (sympatric or microallopatric) speciation. On Mauritius and La Reunion, phylogenetic placement of sympatric white-eyes allow us to rule out a scenario in which independent within-island speciation occurred on both islands; one of the species pairs must have arisen by double colonization, while the other pair is likely to have arisen by the same mechanism. Long-distance immigration therefore appears to be responsible for much of the region's white-eye diversity. Independent immigrations into the region have resulted in lineages with mutually exclusive distributions and it seems likely that competition with congeneric species, rather than arrival frequency, may limit present-day diversity.
Resumo:
The purpose of the present study was to evaluate, using a biomechanical test, the force needed to remove implants with surface modification by laser (Nd:YAG) in comparison with implants with machined surfaces. Twenty-four rabbits received one implant with each surface treatment in the tibia, machined surface (MS) and laser-modified surface (LMS). After 4, 8 and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition and roughness. The average removal torque in each period was 23.28, 24.0 and 33.85 Ncm for MS, and 33.0, 39.87 and 54.57 Ncm for LMS, respectively. The difference between the surfaces in all periods of evaluation was statistically significant (p < 0.05). Surface characterization showed that a deep and regular topography was provided by the laser conditioning, with a great quantity of oxygen ions when compared to the MS. The surface micro-topography analysis showed a statistical difference (p < 0.01) between the roughness of the LMS (R a = 1.38 ± 0.23 μm) when compared to that of the MS (R a = 0.33 ± 0.06 μm). Based on these results, it was possible to conclude that the LMS implants' physical-chemical properties increased bone-implant interaction when compared to the MS implants. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
The Plasma Focus is a device designed to generate a plasma sheet between two coaxial electrodes by means of a high voltage difference. The plasma is then driven to collapse into a “pinch”, where thermonuclear conditions prevail. During the “pinch phase” charged particles are emitted, with two main components: an ion beam peaked forward and an electron beam directed backward. The electron beam emitted backward by Plasma Focus devices is being investigated as a radiation source for medical applications, using it to produce x-rays by interaction with appropriate targets (through bremsstrahlung and characteristic emission). A dedicated Plasma Focus device, named PFMA-3 (Plasma Focus for Medical Applications number 3), has been designed, put in operation and tested by the research groups of the Universities of Bologna and Ferrara. The very high dose rate (several gray per discharge, in less than 1 µs) is a peculiarity of this device that has to be investigated, as it might modify the relative biological effectiveness (RBE). Aim of this Ph.D. project was to investigate the main physical properties of the low-energy x-ray beams produced by a Plasma Focus device and their potential medical applications to IORT treatments. It was necessary to develop the optimal geometrical configuration; to evaluate the x-rays produced and their dose deposited; to estimate the energy electron spectrum produced in the “pinch phase”; to study an optimal target for the conversion of the x-rays; to conduct simulations to study the physics involved; and in order to evaluate the radio-biological features of the beam, cell holders had to be developed for both irradiations and cell growth conditions.
Resumo:
La radioterapia guidata da immagini (IGRT), grazie alle ripetute verifiche della posizione del paziente e della localizzazione del volume bersaglio, si è recentemente affermata come nuovo paradigma nella radioterapia, avendo migliorato radicalmente l’accuratezza nella somministrazione di dose a scopo terapeutico. Una promettente tecnica nel campo dell’IGRT è rappresentata dalla tomografia computerizzata a fascio conico (CBCT). La CBCT a kilovoltaggio, consente di fornire un’accurata mappatura tridimensionale dell’anatomia del paziente, in fase di pianificazione del trattamento e a ogni frazione del medisimo. Tuttavia, la dose da imaging attribuibile alle ripetute scansioni è diventata, negli ultimi anni, oggetto di una crescente preoccupazione nel contesto clinico. Lo scopo di questo lavoro è di valutare quantitativamente la dose addizionale somministrata da CBCT a kilovoltaggio, con riferimento a tre tipici protocolli di scansione per Varian OnBoard Imaging Systems (OBI, Palo Alto, California). A questo scopo sono state condotte simulazioni con codici Monte Carlo per il calcolo della dose, utilizzando il pacchetto gCTD, sviluppato sull’architettura della scheda grafica. L’utilizzo della GPU per sistemi server di calcolo ha permesso di raggiungere alte efficienze computazionali, accelerando le simulazioni Monte Carlo fino a raggiungere tempi di calcolo di ~1 min per un caso tipico. Inizialmente sono state condotte misure sperimentali di dose su un fantoccio d’acqua. I parametri necessari per la modellazione della sorgente di raggi X nel codice gCTD sono stati ottenuti attraverso un processo di validazione del codice al fine di accordare i valori di dose simulati in acqua con le misure nel fantoccio. Lo studio si concentra su cinquanta pazienti sottoposti a cicli di radioterapia a intensità modulata (IMRT). Venticinque pazienti con tumore al cervello sono utilizzati per studiare la dose nel protocollo standard-dose head e venticinque pazienti con tumore alla prostata sono selezionati per studiare la dose nei protocolli pelvis e pelvis spotlight. La dose media a ogni organo è calcolata. La dose media al 2% dei voxels con i valori più alti di dose è inoltre computata per ogni organo, al fine di caratterizzare l’omogeneità spaziale della distribuzione.
Resumo:
To determine the outcome of patients with brain metastasis (BM) from lung cancer treated with an external beam radiotherapy boost (RTB) after whole brain radiotherapy (WBRT).
Resumo:
Abstract Purpose: To further evaluate the use of microbeam irradiation (MBI) as a potential means of non-invasive brain tumor treatment by investigating the induction of a bystander effect in non-irradiated tissue. Methods: Adult rats were irradiated with 35 or 350 Gy at the European Synchotron Research Facility (ESRF), using homogenous (broad beam) irradiation (HI) or a high energy microbeam delivered to the right brain hemisphere only. The proteome of the frontal lobes were then analyzed using two-dimensional electrophoresis (2-DE) and mass spectrometry. Results: HI resulted in proteomic responses indicative of tumourigenesis; increased albumin, aconitase and triosphosphate isomerase (TPI), and decreased dihydrolipoyldehydrogenase (DLD). The MBI bystander effect proteomic changes were indicative of reactive oxygen species mediated apoptosis; reduced TPI, prohibitin and tubulin and increased glial fibrillary acidic protein (GFAP). These potentially anti-tumourigenic apoptotic proteomic changes are also associated with neurodegeneration. However the bystander effect also increased heat shock protein (HSP) 71 turnover. HSP 71 is known to protect against all of the neurological disorders characterized by the bystander effect proteome changes. Conclusions: These results indicate that the collective interaction of these MBI-induced bystander effect proteins and their mediation by HSP 71, may confer a protective effect which now warrants additional experimental attention.
Resumo:
Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors.
Resumo:
To analyze the effect of primary Gleason (pG) grade among a large cohort of Gleason 7 prostate cancer patients treated with external beam radiation therapy (EBRT).