765 resultados para water shortages, risk management, business
Resumo:
This article examines recent research on risk assessment and probation practice in Ireland and relates the findings to the ongoing debate regarding risk management practices in probation. The piece discusses current theoretical arguments on the influence of risk in criminal justice and outlines the impact of risk discourse on probation practice in Ireland and England and Wales. Using a mix of qualitative and quantitative methods, Irish probation officers’ attitudes are examined in order to highlight key issues facing probation officers when making risk decisions. These findings are compared and contrasted to other research results from England and Wales. All the conclusions identify both positive and negative consequences of adopting risk tools and point to the continued salience of clinical judgment over actuarial methods of risk assessment. It is argued that the research highlights the role of ‘resistance’ by criminal justice professionals in mediating the effects of the ‘new penology’ at the level of implementation. The idea of resistance holds particular relevance for probation practice in Ireland where professional discretion is maintained within the National Standards framework. Despite this, to date there has been an uncritical approach taken to risk assessment which may ignore the dangers of risk inflation/deflation and the need to take into account local factors in assessing risk of reoffending
Resumo:
Worldwide water managers are increasingly challenged to allocate sufficient and affordable water supplies to different water use sectors without further degrading river ecosystems and their valuable services to mankind. Since 1950 human population almost tripled, water abstractions increased by a factor of four, and the number of large dam constructions is about eight times higher today. From a hydrological perspective, the alteration of river flows (temporally and spatially) is one of the main consequences of global change and further impairments can be expected given growing population pressure and projected climate change. Implications have been addressed in numerous hydrological studies, but with a clear focus on human water demands. Ecological water requirements have often been neglected or addressed in a very simplistic manner, particularly from the large-scale perspective. With his PhD thesis, Christof Schneider took up the challenge to assess direct (dam operation and water abstraction) and indirect (climate change) impacts of human activities on river flow regimes and evaluate the consequences for river ecosystems by using a modeling approach. The global hydrology model WaterGAP3 (developed at CESR) was applied and further developed within this thesis to carry out several model experiments and assess anthropogenic river flow regime modifications and their effects on river ecosystems. To address the complexity of ecological water requirements the assessment is based on three main ideas: (i) the natural flow paradigm, (ii) the perception that different flows have different ecological functions, and (iii) the flood pulse concept. The thesis shows that WaterGAP3 performs well in representing ecologically relevant flow characteristics on a daily time step, and therefore justifies its application within this research field. For the first time a methodology was established to estimate bankfull flow on a 5 by 5 arc minute grid cell raster globally, which is a key parameter in eFlow assessments as it marks the point where rivers hydraulically connect to adjacent floodplains. Management of dams and water consumption pose a risk to floodplains and riparian wetlands as flood volumes are significantly reduced. The thesis highlights that almost one-third of 93 selected Ramsar sites are seriously affected by modified inundation patterns today, and in the future, inundation patterns are very likely to be further impaired as a result of new major dam initiatives and climate change. Global warming has been identified as a major threat to river flow regimes as rising temperatures, declining snow cover, changing precipitation patterns and increasing climate variability are expected to seriously modify river flow regimes in the future. Flow regimes in all climate zones will be affected, in particular the polar zone (Northern Scandinavia) with higher river flows during the year and higher flood peaks in spring. On the other side, river flows in the Mediterranean are likely to be even more intermittent in the future because of strong reductions in mean summer precipitation as well as a decrease in winter precipitation, leading to an increasing number of zero flow events creating isolated pools along the river and transitions from lotic to lentic waters. As a result, strong impacts on river ecosystem integrity can be expected. Already today, large amounts of water are withdrawn in this region for agricultural irrigation and climate change is likely to exacerbate the current situation of water shortages.
Resumo:
The Delaware River provides half of New York City's drinking water, is a habitat for wild trout, American shad and the federally endangered dwarf wedge mussel. It has suffered four 100‐year floods in the last seven years. A drought during the 1960s stands as a warning of the potential vulnerability of the New York City area to severe water shortages if a similar drought were to recur. The water releases from three New York City dams on the Delaware River's headwaters impact not only the reliability of the city’s water supply, but also the potential impact of floods, and the quality of the aquatic habitat in the upper river. The goal of this work is to influence the Delaware River water release policies (FFMP/OST) to further benefit river habitat and fisheries without increasing New York City's drought risk, or the flood risk to down basin residents. The Delaware water release policies are constrained by the dictates of two US Supreme Court Decrees (1931 and 1954) and the need for unanimity among four states: New York, New Jersey, Pennsylvania, and Delaware ‐‐ and New York City. Coordination of their activities and the operation under the existing decrees is provided by the Delaware River Basin Commission (DRBC). Questions such as the probability of the system approaching drought state based on the current FFMP plan and the severity of the 1960s drought are addressed using long record paleo‐reconstructions of flows. For this study, we developed reconstructed total annual flows (water year) for 3 reservoir inflows using regional tree rings going back upto 1754 (a total of 246 years). The reconstructed flows are used with a simple reservoir model to quantify droughts. We observe that the 1960s drought is by far the worst drought based on 246 years of simulations (since 1754).
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.
Resumo:
In many arid or semi-arid Mediterranean regions, agriculture is dependent on irrigation. When hydrological drought phenomena occur, farmers suffer from water shortages, incurring important economic losses. Yet, there is not agricultural insurance available for lack of irrigation water. This work attempts to evaluate hydrological drought risk and its economic impact on crop production in order to provide the basis for the design of drought insurance for irrigated arable crops. With this objective a model that relates water availability with expected yields is developed. Crop water requirements are calculated from evapotranspiration, effective rainfall and soil water balance. FAO?s methodology and AquaCrop software have been used to establish the relationship between water allocations and crop yields. The analysis is applied to the irrigation zone ?Riegos de Bardenas?, which is located in the Ebro river basin, northeast Spain, to the main arable crops in the area. Results show the fair premiums of different hydrological drought insurance products. Whole-farm insurance or irrigation district insurance should be preferable to crop specific insurance due to the drought management strategies used by farmers.
Resumo:
Uses research in a major UK company on the introduction of an electronic document management system to explore perceptions of, and attitudes to, risk. Phenomenological methods were used; with subsequent dialogue transcripts evaluated with Winmax dialogue software, using an adapted theoretical framework based upon an analysis of the literature. The paper identifies a number of factors, and builds a framework, that should support a greater understanding of risk assessment and project management by the academic community and practitioners.
Resumo:
Universities are under no less pressure to adopt risk management strategies than other public and private organisations. The risk management of doctoral education is a particularly important issue given that a doctorate is the highest academic qualification a university offers and stakes are high in terms of assuring its quality. However, intense risk management can interfere with the intellectual and pedagogical work which are essentially part of doctoral education. This paper seeks to understand how the culture of risk meets the culture of doctoral education and with what effect. The authors draw on sociological understandings of risk in the work of Anthony Giddens (2002) and Ulrich Beck (1992), the anthropological focus on liminality in the work of Mary Douglas (1990), and the psychological theorising of human error in the work of James Reason (1990). The paper concludes that risk consciousness brings its own risks—in particular, the potential transformation of a culture based on intellect into a culture based on compliance.
Resumo:
This paper examines trends in the practice of Operations Management and in teaching the field in major Business Schools. Operations Management has been defined as the design and management of transformation processes that create value for society. The operations function is the one function directly involved in that transformation, and hence is directly responsible for the activities that justify the existence of the firm, both economically and as a value-creating organization in society. The top rated schools in Operations Management are the top-rated research-intensive Business Schools in the world. Operations Management is an area that has been undergoing rapid change in response to changes in business practices worldwide. It is at the heart of changes of which the AACSB report Management Education at Risk, August 2002 (p 20), comments of Business Schools in general: ‘With regard to global relevance (of Business Schools), the complex opportunities and challenges that emanate from the world scope of operations, outsourcing, supply chains, partnerships, and financial and consumer markets – all linked in real time through the Internet – are not reflected adequately in curricula and learning approaches.’ Products, and even services, depend increasingly on advanced technology. This is true globally and especially so for countries in South East and East Asia, from which Australian Universities draw a significant number of students. Services operations management has become much more important, while there are both educational and industrial needs in management science or operations research.
Resumo:
Investment in mining projects, like most business investment, is susceptible to risk and uncertainty. The ability to effectively identify, assess and manage risk may enable strategic investments to be sheltered and operations to perform closer to their potential. In mining, geological uncertainty is seen as the major contributor to not meeting project expectations. The need to assess and manage geological risk for project valuation and decision-making translates to the need to assess and manage risk in any pertinent parameter of open pit design and production scheduling. This is achieved by taking geological uncertainty into account in the mine optimisation process. This thesis develops methods that enable geological uncertainty to be effectively modelled and the resulting risk in long-term production scheduling to be quantified and managed. One of the main accomplishments of this thesis is the development of a new, risk-based method for the optimisation of long-term production scheduling. In addition to maximising economic returns, the new method minimises the risk of deviating from production forecasts, given the understanding of the orebody. This ability represents a major advance in the risk management of open pit mining.
Resumo:
Enterprise Risk Management (ERM) and Knowledge Management (KM) both encompass top-down and bottom-up approaches developing and embedding risk knowledge concepts and processes in strategy, policies, risk appetite definition, the decision-making process and business processes. The capacity to transfer risk knowledge affects all stakeholders and understanding of the risk knowledge about the enterprise's value is a key requirement in order to identify protection strategies for business sustainability. There are various factors that affect this capacity for transferring and understanding. Previous work has established that there is a difference between the influence of KM variables on Risk Control and on the perceived value of ERM. Communication among groups appears as a significant variable in improving Risk Control but only as a weak factor in improving the perceived value of ERM. However, the ERM mandate requires for its implementation a clear understanding, of risk management (RM) policies, actions and results, and the use of the integral view of RM as a governance and compliance program to support the value driven management of the organization. Furthermore, ERM implementation demands better capabilities for unification of the criteria of risk analysis, alignment of policies and protection guidelines across the organization. These capabilities can be affected by risk knowledge sharing between the RM group and the Board of Directors and other executives in the organization. This research presents an exploratory analysis of risk knowledge transfer variables used in risk management practice. A survey to risk management executives from 65 firms in various industries was undertaken and 108 answers were analyzed. Potential relationships among the variables are investigated using descriptive statistics and multivariate statistical models. The level of understanding of risk management policies and reports by the board is related to the quality of the flow of communication in the firm and perceived level of integration of the risk policy in the business processes.
Resumo:
Risk and knowledge are two concepts and components of business management which have so far been studied almost independently. This is especially true where risk management is conceived mainly in financial terms, as, for example, in the banking sector. The banking sector has sophisticated methodologies for managing risk, such as mathematical risk modeling. However. the methodologies for analyzing risk do not explicitly include knowledge management for risk knowledge creation and risk knowledge transfer. Banks are affected by internal and external changes with the consequent accommodation to new business models new regulations and the competition of big players around the world. Thus, banks have different levels of risk appetite and policies in risk management. This paper takes into consideration that business models are changing and that management is looking across the organization to identify the influence of strategic planning, information systems theory, risk management and knowledge management. These disciplines can handle the risks affecting banking that arise from different areas, but only if they work together. This creates a need to view them in an integrated way. This article sees enterprise risk management as a specific application of knowledge in order to control deviation from strategic objectives, shareholders' values and stakeholders' relationships. Before and after a modeling process it necessary to find insights into how the application of knowledge management processes can improve the understanding of risk and the implementation of enterprise risk management. The article presents a propose methodology to contribute to providing a guide for developing risk modeling knowledge and a reduction of knowledge silos, in order to improve the quality and quantity of solutions related to risk inquiries across the organization.