953 resultados para volume-time curve
Resumo:
Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of temperature and moisture fields as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.
Resumo:
Pseudomonas aeruginosa genotyping relies mainly upon DNA fingerprinting methods, which can be subjective, expensive and time-consuming. The detection of at least three different clonal P. aeruginosa strains in patients attending two cystic fibrosis (CF) centres in a single Australian city prompted the design of a non-gel-based PCR method to enable clinical microbiology laboratories to readily identify these clonal strains. We designed a detection method utilizing heat-denatured P. aeruginosa isolates and a ten-single-nucleotide polymorphism (SNP) profile. Strain differences were detected by SYBR Green-based real-time PCR and high-resolution melting curve analysis (HRM10SNP assay). Overall, 106 P. aeruginosa sputum isolates collected from 74 patients with CF, as well as five reference strains, were analysed with the HRM10SNP assay, and the results were compared with those obtained by pulsed-field gel electrophoresis (PFGE). The HRM10SNP assay accurately identified all 45 isolates as members of one of the three major clonal strains characterized by PFGE in two Brisbane CF centres (Australian epidemic strain-1, Australian epidemic strain-2 and P42) from 61 other P. aeruginosa strains from Australian CF patients and two representative overseas epidemic strain isolates. The HRM10SNP method is simple, is relatively inexpensive and can be completed in <3 h. In our setting, it could be made easily available for clinical microbiology laboratories to screen for local P. aeruginosa strains and to guide infection control policies. Further studies are needed to determine whether the HRM10SNP assay can also be modified to detect additional clonal strains that are prevalent in other CF centres.
Resumo:
The difference between the rate of change of cerebral blood volume (CBV) and cerebral blood flow (CBF) following stimulation is thought to be due to circumferential stress relaxation in veins (Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689). In this paper we explore the visco-elastic properties of blood vessels, and present a dynamic model relating changes in CBF to changes in CBV. We refer to this model as the visco-elastic windkessel (VW) model. A novel feature of this model is that the parameter characterising the pressure–volume relationship of blood vessels is treated as a state variable dependent on the rate of change of CBV, producing hysteresis in the pressure–volume space during vessel dilation and contraction. The VW model is nonlinear time-invariant, and is able to predict the observed differences between the time series of CBV and that of CBF measurements following changes in neural activity. Like the windkessel model derived by Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689, the VW model is primarily a model of haemodynamic changes in the venous compartment. The VW model is demonstrated to have the following characteristics typical of visco-elastic materials: (1) hysteresis, (2) creep, and (3) stress relaxation, hence it provides a unified model of the visco-elastic properties of the vasculature. The model will not only contribute to the interpretation of the Blood Oxygen Level Dependent (BOLD) signals from functional Magnetic Resonance Imaging (fMRI) experiments, but also find applications in the study and modelling of the brain vasculature and the haemodynamics of circulatory and cardiovascular systems.
Resumo:
Real-time ultrasonography (RTU) was used to measure the longissimus dorsi muscle (LM) volume in vivo and to predict the carcass composition of rabbits. For this, 63 New Zealand White × Californian rabbits with 2093±63 g live weight were used. Animals were scanned between the 6th and 7th lumbar vertebrae using an RTU equipment with a 7.5 MHz probe. Measurements of LM volume were obtianed both in vivo and on carcass. Regression equations were used for the prediction of carcass composition and LM volume using the LM volume measured obtained with RTU (LMVU) as independent variable. Carcass meat, bone and total dissectible fat weights represented 780, 164 and 56 g/kg of the reference carcass weight, respectively. Regression equations showed a strong relationship between LMVU and the correspondent volume in carcass. Furthermore, LMVU was also useful in predicting the amounts of carcass tissues. It is possible to predict LM volume in the carcass using the LM volume measured in vivo by RTU. The amount of carcass tissues can be predicted by the LM volume measured in vivo by RTU.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The stair-climbing test as measured in meters or number of steps has been proposed to predict the risk of postoperative complications. The study objective was to determine whether the stair-climbing time can predict the risk of postoperative complications. Methods: Patients aged more than 18 years with a recommendation of thoracotomy for lung resection were included in the study. Spirometry was performed according to the criteria by the American Thoracic Society. The stair-climbing test was performed on shaded stairs with a total of 12.16 m in height, and the stair-climbing time in seconds elapsed during the climb of the total height was measured. The accuracy test was applied to obtain stair-climbing time predictive values, and the receiver operating characteristic curve was calculated. Variables were tested for association with postoperative cardiopulmonary complications using the Student t test for independent populations, the Mann-Whitney test, and the chi-square or Fisher exact test. Logistic regression analysis was performed. Results: Ninety-eight patients were evaluated. Of these, 27 showed postoperative complications. Differences were found between the groups for age and attributes obtained from the stair-climbing test. The cutoff point for stair-climbing time obtained from the receiver operating characteristic curve was 37.5 seconds. No differences were found between the groups for forced expiratory volume in 1 second. In the logistic regression, stair-climbing time was the only variable associated with postoperative complications, suggesting that the risk of postoperative complications increases with increased stair-climbing time. Conclusions: The only variable showing association with complications, according to multivariate analysis, was stair-climbing time. © 2013 by The American Association for Thoracic Surgery.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work quantifies, using ADP and rating curve techniques, the instantaneous outflows at estuarine interfaces: higher to middle estuary and middle to lower estuary, in two medium-sized watersheds (72 000 and 66 000 km(2) of area, respectively), the Jaguaribe and Contas Rivers located in the northeastern (semi-arid) and eastern (tropical humid) Brazilian coasts, respectively. Results from ADP showed that the net water balances show the Contas River as a net water exporter, whereas the Jaguaribe River Estuary is a net water importer. At the Jaguaribe Estuary, water retention during flood tide contributes to 58% of the total volume transferred during the ebb tide from the middle to lower estuary. However, 42% of the total water volume (452 m(3) s(-1)) that entered during flood tide is retained in the middle estuary. In the Contas River, 90% of the total water is retained during the flood tide contributing to the volume transported in the ebb tide from the middle to the lower estuary. Outflows obtained with the rating curve method for the Contas and Jaguaribe Rivers were uniform through time due to river flow normalization by dams in both basins. Estimated outflows with this method are about 65% (Contas) and 95% (Jaguaribe) lower compared to outflows obtained with ADP. This suggests that the outflows obtained with the rating curve method underestimate the net water balance in both systems, particularly in the Jaguaribe River under a semi-arid climate. This underestimation is somewhat decreased due to wetter conditions in the Contas River basin. Copyright. (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The results of several studies assessing dialysis dose have dampened the enthusiasm of clinicians for considering dialysis dose as a modifiable factor influencing outcomes in patients with acute kidney injury. Powerful evidence from two large, multicenter trials indicates that increasing the dialysis dose, measured as hourly effluent volume, has no benefit in continuous renal replacement therapy (CRRT). However, some important operational characteristics that affect delivered dose were not evaluated. Effluent volume does not correspond to the actual delivered dose, as a decline in filter efficacy reduces solute removal during therapy. We believe that providing accurate parameters of delivered dose could improve the delivery of a prescribed dose and refine the assessment of the effect of dose on outcomes in critically ill patients treated with CRRT.
Tidal volume single breath washout of two tracer gases--a practical and promising lung function test
Resumo:
Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing.
Resumo:
There is no accepted way of measuring prothrombin time without time loss for patients undergoing major surgery who are at risk of intraoperative dilution and consumption coagulopathy due to bleeding and volume replacement with crystalloids or colloids. Decisions to transfuse fresh frozen plasma and procoagulatory drugs have to rely on clinical judgment in these situations. Point-of-care devices are considerably faster than the standard laboratory methods. In this study we assessed the accuracy of a Point-of-care (PoC) device measuring prothrombin time compared to the standard laboratory method. Patients undergoing major surgery and intensive care unit patients were included. PoC prothrombin time was measured by CoaguChek XS Plus (Roche Diagnostics, Switzerland). PoC and reference tests were performed independently and interpreted under blinded conditions. Using a cut-off prothrombin time of 50%, we calculated diagnostic accuracy measures, plotted a receiver operating characteristic (ROC) curve and tested for equivalence between the two methods. PoC sensitivity and specificity were 95% (95% CI 77%, 100%) and 95% (95% CI 91%, 98%) respectively. The negative likelihood ratio was 0.05 (95% CI 0.01, 0.32). The positive likelihood ratio was 19.57 (95% CI 10.62, 36.06). The area under the ROC curve was 0.988. Equivalence between the two methods was confirmed. CoaguChek XS Plus is a rapid and highly accurate test compared with the reference test. These findings suggest that PoC testing will be useful for monitoring intraoperative prothrombin time when coagulopathy is suspected. It could lead to a more rational use of expensive and limited blood bank resources.