999 resultados para variable optical attenuator
Resumo:
Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.
Resumo:
The total antioxidant capacity (TAC) of 28 flavoured water samples was assessed by ferric reducing antioxidant potential (FRAP), oxygen radical absorbance capacity (ORAC), trolox equivalent antioxidant capacity (TEAC) and total reactive antioxidant potential (TRAP) methods. It was observed that flavoured waters had higher antioxidant activity than the corresponding natural ones. The observed differences were attributed to flavours, juice and vitamins. Generally, higher TAC contents were obtained on lemon waters and lower values on guava and raspberry flavoured waters. Lower and higher TACs were obtained by TRAP and ORAC method, respectively. Statistical analysis suggested that vitamins and flavours increased the antioxidant content of the commercial waters.
Resumo:
A novel optical disposable probe for screening fluoroquinolones in fish farming waters is presented, having Norfloxacin (NFX) as target compound. The colorimetric reaction takes place in the solid/liquid interface consisting of a plasticized PVC layer carrying the colorimetric reagent and the sample solution. NFX solutions dropped on top of this solid-sensory surface provided a colour change from light yellow to dark orange. Several metals were tested as colorimetric reagents and Fe(III) was selected. The main parameters affecting the obtained colour were assessed and optimised in both liquid and solid phases. The corresponding studies were conducted by visible spectrophotometry and digital image acquisition. The three coordinates of the HSL model system of the collected image (Hue, Saturation and Lightness) were obtained by simple image management (enabled in any computer). The analytical response of the optimised solid-state optical probe against concentration was tested for several mathematical transformations of the colour coordinates. Linear behaviour was observed for logarithm NFX concentration against Hue+Lightness. Under this condition, the sensor exhibited a limit of detection below 50 μM (corresponding to about 16 mg/mL). Visual inspection also enabled semi-quantitative information. The selectivity was ensured against drugs from other chemical groups than fluoroquinolones. Finally, similar procedure was used to prepare an array of sensors for NFX, consisting on different metal species. Cu(II), Mn(II) and aluminon were selected for this purpose. The sensor array was used to detect NFX in aquaculture water, without any prior sample manipulation.
Resumo:
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.
Resumo:
We are presenting a simple, low-cost and rapid solid-state optical probe for screening chlorpromazine (CPZ) in aquacultures. The method exploits the colourimetric reaction between CPZ and Fe(III) ion that occurs at a solid/liquid interface, the solid layer consisting of ferric iron entrapped in a layer of plasticized PVC. If solutions containing CPZ are dropped onto such a layer, a colour change occurs from light yellow to dark pink or even light blue, depending on the concentration of CPZ. Visual inspection enables the concentration of CPZ to be estimated. The resulting colouration was also monitored by digital image collection for a more accurate quantification. The three coordinates of the hue, saturation and lightness system were obtained by standard image processing along with mathematical data treatment. The parameters affecting colour were assessed and optimized. Studies were conducted by visible spectrophotometry and digital image acquisition, respectively. The response of the optimized probe towards the concentration of CPZ was tested for several mathematical transformations of the colour coordinates, and a linear relation was found for the sum of hue and luminosity. The limit of detection is 50 μM (corresponding to about 16 μg per mL). The probe enables quick screening for CPZ in real water samples with prior sample treatment.
Resumo:
Adhesive bonding is an excellent alternative to traditional joining techniques such as welding, mechanical fastening or riveting. However, there are many factors that have to be accounted for during joint design to accurately predict the joint strength. One of these is the adhesive layer thickness (tA). Most of the results are for epoxy structural adhesives, tailored to perform best with small values of tA, and these show that the lap joint strength decreases with increase of tA (the optimum joint strength is usually obtained with tA values between 0.1 and 0.2 mm). Recently, polyurethane adhesives were made available in the market, designed to perform with larger tA values, and whose fracture behaviour is still not studied. In this work, the effect of tA on the tensile fracture toughness (View the MathML source) of a bonded joint is studied, considering a novel high strength and ductile polyurethane adhesive for the automotive industry. This work consists on the fracture characterization of the bond by a conventional and the J-integral techniques, which accurately account for root rotation effects. An optical measurement method is used for the evaluation of crack tip opening (δn) and adherends rotation at the crack tip (θo) during the test, supported by a Matlab® sub-routine for the automated extraction of these parameters. As output of this work, fracture data is provided in traction for the selected adhesive, enabling the subsequent strength prediction of bonded joints.
Resumo:
The use of adhesive joints has increased in recent decades due to its competitive features compared with traditional methods. This work aims to estimate the tensile critical strain energy release rate (GIC) of adhesive joints by the Double-Cantilever Beam (DCB) test. The J-integral is used since it enables obtaining the tensile Cohesive Zone Model (CZM) law. An optical measuring method was developed for assessing the crack tip opening (δn) and adherends rotation (θo). The proposed CZM laws were best approximated by a triangular shape for the brittle adhesive and a trapezoidal shape for the two ductile adhesives.
Resumo:
With the objective to study the variation of optical properties of rat muscle during optical clearing, we have performed a set of optical measurements from that kind of tissue. The measurements performed were total transmittance, collimated transmittance, specular reflectance and total reflectance. This set of measurements is sufficient to determine diffuse reflectance and absorbance of the sample, also necessary to estimate the optical properties. All the performed measurements and calculated quantities will be used later in inverse Monte Carlo (IMC) simulations to determine the evolution of the optical properties of muscle during treatments with ethylene glycol and glucose. The results obtained with the measurements already provide some information about the optical clearing treatments applied to the muscle and translate the mechanisms of turning the tissue more transparent and sequence of regimes of optical clearing.
Resumo:
The study of agent diffusion in biological tissues is very important to understand and characterize the optical clearing effects and mechanisms involved: tissue dehydration and refractive index matching. From measurements made to study the optical clearing, it is obvious that light scattering is reduced and that the optical properties of the tissue are controlled in the process. On the other hand, optical measurements do not allow direct determination of the diffusion properties of the agent in the tissue and some calculations are necessary to estimate those properties. This fact is imposed by the occurrence of two fluxes at optical clearing: water typically directed out of and agent directed into the tissue. When the water content in the immersion solution is approximately the same as the free water content of the tissue, a balance is established for water and the agent flux dominates. To prove this concept experimentally, we have measured the collimated transmittance of skeletal muscle samples under treatment with aqueous solutions containing different concentrations of glucose. After estimating the mean diffusion time values for each of the treatments we have represented those values as a function of glucose concentration in solution. Such a representation presents a maximum diffusion time for a water content in solution equal to the tissue free water content. Such a maximum represents the real diffusion time of glucose in the muscle and with this value we could calculate the corresponding diffusion coefficient.
Resumo:
En la actualidad, el cambio climático es uno de los temas de mayor preocupación para la población mundial y los científicos de todo el mundo. Debido al crecimiento de la población de forma exponencial, la demanda de energía aumenta acorde con ello, por lo que las actividades de producción energética aumentan consecuentemente, siendo éstas las principales causantes de la aceleración del cambio climático. Pese a que muchos países previamente habían apostado por la producción energética mediante tecnologías limpias a partir de energías renovables, hoy en día es imposible prescindir de los combustibles fósiles pues, junto a la energía nuclear, suponen el mayor porcentaje dentro del mix energético de los países más grandes del mundo, por lo que el cambio debe ser global y con todos los países implicados al unísono. Por ello, los países desarrollados decidieron acordar una serie de leyes y normas para la regulación y el control de la expansión energética en el mundo, mediante programas de incentivo a las empresas para la producción de energía limpia, libre de emisiones, sustituyendo y mejorando los procesos tecnológicos para que garanticen un desarrollo sostenible. De esta forma, se conseguiría también reducir la dependencia energética de los países productores de los recursos fósiles más importantes y a su vez, ayudar a otros sectores a diversificar su negocio y mejorar así la economía de las áreas colindantes a las centrales de producción térmica. Gracias a estos programas de incentivo o, también llamados mecanismos de flexibilidad, las empresas productoras de energía, al acometer inversiones en tecnologia limpia, dejan de emitir gases de efecto invernadero a la atmósfera. Por tanto, gracias al comercio de emisiones y al mercado voluntario, las empresas pueden vender dichas emisiones aumentando la rentabilidad de sus proyectos, haciendo más atractivo de por sí el hecho de invertir en tecnología limpia. En el proyecto desarrollado, se podrá comprobar de una forma más extensa todo lo anteriormente citado. Para ello, se desarrollará una herramienta de cálculo que nos permitirá analizar los beneficios obtenidos por la sustitución de un combustible fósil, no renovable, por otro renovable y sostenible, como es la biomasa. En esta herramienta se calcularán, de forma estimada, las reducciones de las emisiones de CO2 que supone dicha sustitución y se hallará, en función del valor de las cotizaciones de los bonos de carbono en los diferentes mercados, cuál será el beneficio económico obtenido por la venta de las emisiones no emitidas que supone esta sustitución. Por último, dicho beneficio será insertado en un balance económico de la central donde se tendrán en cuenta otras variables como el precio del combustible o las fluctuaciones del precio de la electricidad, para hallar finalmente la rentabilidad que supondría la inversión de esta adaptación en la central. Con el fin de complementar y aplicar la herramienta de cálculo, se analizarán dos casos prácticos de una central de carbón, en los cuales se decide su suscripción dentro del contexto de los mecanismos de flexibilidad creados en los acuerdos internacionales.
Resumo:
Dissertação de Mestrado em Arte e Ciência do Vidro
Resumo:
The study of chemical diffusion in biological tissues is a research field of high importance and with application in many clinical, research and industrial areas. The evaluation of diffusion and viscosity properties of chemicals in tissues is necessary to characterize treatments or inclusion of preservatives in tissues or organs for low temperature conservation. Recently, we have demonstrated experimentally that the diffusion properties and dynamic viscosity of sugars and alcohols can be evaluated from optical measurements. Our studies were performed in skeletal muscle, but our results have revealed that the same methodology can be used with other tissues and different chemicals. Considering the significant number of studies that can be made with this method, it becomes necessary to turn data processing and calculation easier. With this objective, we have developed a software application that integrates all processing and calculations, turning the researcher work easier and faster. Using the same experimental data that previously was used to estimate the diffusion and viscosity of glucose in skeletal muscle, we have repeated the calculations with the new application. Comparing between the results obtained with the new application and with previous independent routines we have demonstrated great similarity and consequently validated the application. This new tool is now available to be used in similar research to obtain the diffusion properties of other chemicals in different tissues or organs.
Resumo:
Dissertation presented to obtain the PhD degree in Electrical and Computer Engineering - Electronics
Resumo:
Optical immersion clearing is a technique that has been widely studied for more than two decades and that is used to originate a temporary transparency effect in biological tissues. If applied in cooperation with clinical methods it provides optimization of diagnosis and treatment procedures. This technique turns biological tissues more transparent through two main mechanisms — tissue dehydration and refractive index (RI) matching between tissue components. Such matching is obtained by partial replacement of interstitial water by a biocompatible agent that presents higher RI and it can be completely reversible by natural rehydration in vivo or by assisted rehydration in ex vivo tissues. Experimental data to characterize and discriminate between the two mechanisms and to find new ones are necessary. Using a simple method, based on collimated transmittance and thickness measurements made from muscle samples under treatment, we have estimated the diffusion properties of glucose, ethylene glycol (EG) and water that were used to perform such characterization and discrimination. Comparing these properties with data from literature that characterize their diffusion in water we have observed that muscle cell membrane permeability limits agent and water diffusion in the muscle. The same experimental data has allowed to calculate the optical clearing (OC) efficiency and make an interpretation of the internal changes that occurred in muscle during the treatments. The same methodology can now be used to perform similar studies with other agents and in other tissues in order to solve engineering problems at design of inexpensive and robust technologies for a considerable improvement of optical tomographic techniques with better contrast and in-depth imaging.