906 resultados para user Interface design


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, tool support is addressed for the combined disciplines of Model-based testing and performance testing. Model-based testing (MBT) utilizes abstract behavioral models to automate test generation, thus decreasing time and cost of test creation. MBT is a functional testing technique, thereby focusing on output, behavior, and functionality. Performance testing, however, is non-functional and is concerned with responsiveness and stability under various load conditions. MBPeT (Model-Based Performance evaluation Tool) is one such tool which utilizes probabilistic models, representing dynamic real-world user behavior patterns, to generate synthetic workload against a System Under Test and in turn carry out performance analysis based on key performance indicators (KPI). Developed at Åbo Akademi University, the MBPeT tool is currently comprised of a downloadable command-line based tool as well as a graphical user interface. The goal of this thesis project is two-fold: 1) to extend the existing MBPeT tool by deploying it as a web-based application, thereby removing the requirement of local installation, and 2) to design a user interface for this web application which will add new user interaction paradigms to the existing feature set of the tool. All phases of the MBPeT process will be realized via this single web deployment location including probabilistic model creation, test configurations, test session execution against a SUT with real-time monitoring of user configurable metric, and final test report generation and display. This web application (MBPeT Dashboard) is implemented with the Java programming language on top of the Vaadin framework for rich internet application development. The Vaadin framework handles the complicated web communications processes and front-end technologies, freeing developers to implement the business logic as well as the user interface in pure Java. A number of experiments are run in a case study environment to validate the functionality of the newly developed Dashboard application as well as the scalability of the solution implemented in handling multiple concurrent users. The results support a successful solution with regards to the functional and performance criteria defined, while improvements and optimizations are suggested to increase both of these factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Technologies such as automobiles or mobile phones allow us to perform beyond our physical capabilities and travel faster or communicate over long distances. Technologies such as computers and calculators can also help us perform beyond our mental capabilities by storing and manipulating information that we would be unable to process or remember. In recent years there has been a growing interest in assistive technology for cognition (ATC) which can help people compensate for cognitive impairments. The aim of this thesis was to investigate ATC for memory to help people with memory difficulties which impacts independent functioning during everyday life. Chapter one argues that using both neuropsychological and human computing interaction theory and approaches is crucial when developing and researching ATC. Chapter two describes a systematic review and meta-analysis of studies which tested technology to aid memory for groups with ABI, stroke or degenerative disease. Good evidence was found supporting the efficacy of prompting devices which remind the user about a future intention at a set time. Chapter three looks at the prevalence of technologies and memory aids in current use by people with ABI and dementia and the factors that predicted this use. Pre-morbid use of technology, current use of non-tech aids and strategies and age (ABI group only) were the best predictors of this use. Based on the results, chapter four focuses on mobile phone based reminders for people with ABI. Focus groups were held with people with memory impairments after ABI and ABI caregivers (N=12) which discussed the barriers to uptake of mobile phone based reminding. Thematic analysis revealed six key themes that impact uptake of reminder apps; Perceived Need, Social Acceptability, Experience/Expectation, Desired Content and Functions, Cognitive Accessibility and Sensory/Motor Accessibility. The Perceived need theme described the difficulties with insight, motivation and memory which can prevent people from initially setting reminders on a smartphone. Chapter five investigates the efficacy and acceptability of unsolicited prompts (UPs) from a smartphone app (ForgetMeNot) to encourage people with ABI to set reminders. A single-case experimental design study evaluated use of the app over four weeks by three people with severe ABI living in a post-acute rehabilitation hospital. When six UPs were presented through the day from ForgetMeNot, daily reminder-setting and daily memory task completion increased compared to when using the app without the UPs. Chapter six investigates another barrier from chapter 4 – cognitive and sensory accessibility. A study is reported which shows that an app with ‘decision tree’ interface design (ApplTree) leads to more accurate reminder setting performance with no compromise of speed or independence (amount of guidance required) for people with ABI (n=14) compared to a calendar based interface. Chapter seven investigates the efficacy of a wearable reminding device (smartwatch) as a tool for delivering reminders set on a smartphone. Four community dwelling participants with memory difficulties following ABI were included in an ABA single case experimental design study. Three of the participants successfully used the smartwatch throughout the intervention weeks and these participants gave positive usability ratings. Two participants showed improved memory performance when using the smartwatch and all participants had marked decline in memory performance when the technology was removed. Chapter eight is a discussion which highlights the implications of these results for clinicians, researchers and designers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary goals of this study are to: embed sustainable concepts of energy consumption into certain part of existing Computer Science curriculum for English schools; investigate how to motivate 7-to-11 years old kids to learn these concepts; promote responsive ICT (Information and Communications Technology) use by these kids in their daily life; raise their awareness of today’s ecological challenges. Sustainability-related ICT lessons developed aim to provoke computational thinking and creativity to foster understanding of environmental impact of ICT and positive environmental impact of small changes in user energy consumption behaviour. The importance of including sustainability into the Computer Science curriculum is due to the fact that ICT is both a solution and one of the causes of current world ecological problems. This research follows Agile software development methodology. In order to achieve the aforementioned goals, sustainability requirements, curriculum requirements and technical requirements are firstly analysed. Secondly, the web-based user interface is designed. In parallel, a set of three online lessons (video, slideshow and game) is created for the website GreenICTKids.com taking into account several green design patterns. Finally, the evaluation phase involves the collection of adults’ and kids’ feedback on the following: user interface; contents; user interaction; impacts on the kids’ sustainability awareness and on the kids’ behaviour with technologies. In conclusion, a list of research outcomes is as follows: 92% of the adults learnt more about energy consumption; 80% of the kids are motivated to learn about energy consumption and found the website easy to use; 100% of the kids understood the contents and liked website’s visual aspect; 100% of the kids will try to apply in their daily life what they learnt through the online lessons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sequences of timestamped events are currently being generated across nearly every domain of data analytics, from e-commerce web logging to electronic health records used by doctors and medical researchers. Every day, this data type is reviewed by humans who apply statistical tests, hoping to learn everything they can about how these processes work, why they break, and how they can be improved upon. To further uncover how these processes work the way they do, researchers often compare two groups, or cohorts, of event sequences to find the differences and similarities between outcomes and processes. With temporal event sequence data, this task is complex because of the variety of ways single events and sequences of events can differ between the two cohorts of records: the structure of the event sequences (e.g., event order, co-occurring events, or frequencies of events), the attributes about the events and records (e.g., gender of a patient), or metrics about the timestamps themselves (e.g., duration of an event). Running statistical tests to cover all these cases and determining which results are significant becomes cumbersome. Current visual analytics tools for comparing groups of event sequences emphasize a purely statistical or purely visual approach for comparison. Visual analytics tools leverage humans' ability to easily see patterns and anomalies that they were not expecting, but is limited by uncertainty in findings. Statistical tools emphasize finding significant differences in the data, but often requires researchers have a concrete question and doesn't facilitate more general exploration of the data. Combining visual analytics tools with statistical methods leverages the benefits of both approaches for quicker and easier insight discovery. Integrating statistics into a visualization tool presents many challenges on the frontend (e.g., displaying the results of many different metrics concisely) and in the backend (e.g., scalability challenges with running various metrics on multi-dimensional data at once). I begin by exploring the problem of comparing cohorts of event sequences and understanding the questions that analysts commonly ask in this task. From there, I demonstrate that combining automated statistics with an interactive user interface amplifies the benefits of both types of tools, thereby enabling analysts to conduct quicker and easier data exploration, hypothesis generation, and insight discovery. The direct contributions of this dissertation are: (1) a taxonomy of metrics for comparing cohorts of temporal event sequences, (2) a statistical framework for exploratory data analysis with a method I refer to as high-volume hypothesis testing (HVHT), (3) a family of visualizations and guidelines for interaction techniques that are useful for understanding and parsing the results, and (4) a user study, five long-term case studies, and five short-term case studies which demonstrate the utility and impact of these methods in various domains: four in the medical domain, one in web log analysis, two in education, and one each in social networks, sports analytics, and security. My dissertation contributes an understanding of how cohorts of temporal event sequences are commonly compared and the difficulties associated with applying and parsing the results of these metrics. It also contributes a set of visualizations, algorithms, and design guidelines for balancing automated statistics with user-driven analysis to guide users to significant, distinguishing features between cohorts. This work opens avenues for future research in comparing two or more groups of temporal event sequences, opening traditional machine learning and data mining techniques to user interaction, and extending the principles found in this dissertation to data types beyond temporal event sequences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O avanço das tecnologias de informação continua a mudar os paradigmas de ensino e aprendizagem. Os meios disponíveis são cada vez mais diversificados e, com a necessidade de procurar novos estudantes e diversificar o público-alvo, as instituições de ensino superior estão a repensar os seus modelos de negócio e estratégias pedagógicas. A proliferação de dispositivos móveis catalisa uma aposta crescente no ensino a distância (EaD) no sentido de proporcionar aprendizagens em mobilidade (m-learning). No entanto, as soluções existentes para m-learning são ainda pouco adaptadas às recentes metodologias de EaD, na maioria das vezes funcionando como extensão de um ambiente virtual de aprendizagem ou com muito foco nos conteúdos. Sendo a Universidade Aberta (UAb) a única instituição de ensino superior público em Portugal de ensino a distância, com um modelo pedagógico próprio, constitui um natural caso de aplicação de tecnologia móvel em novos contextos de aprendizagem, importando por isso estudar e desenhar os mecanismos de interação mais adequados com professores e estudantes em mobilidade. Adotou-se neste trabalho a metodologia Design Science Research, tendo sido identificadas as características e comportamentos de potenciais utilizadores, e definidas as funcionalidades que devem ser disponibilizadas na primeira versão de uma aplicação para dispositivos móveis (app) no contexto do ensino a distância. É proposto o design da interface dessa app, usando o modelo da UAb como caso de aplicação, e disponibilizada uma lista de orientações para o desenvolvimento do protótipo funcional. Da investigação realizada, concluiu-se que a interface proposta constitui um modelo válido para o desenho de uma app para aprendizagens em mobilidade, no regime de ensino de uma universidade virtual. A partir deste modelo, as instituições de ensino superior podem desenvolver apps adaptando-se ao avanço das Tecnologias de Informação e Comunicação e ficarem alinhadas com as necessidades dos seus alunos e docentes, particularmente se dispuserem de oferta formativa a distância.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since children already use and explore applications on smartphones, we use this as the starting point for design. Our monitoring and analysis framework, BaranC, enables us to discover and analyse which applications children uses and precisely how they interact with them. The monitoring happens unobtrusively in the background so children interact normally in their own natural environment without artificial constraints. Thus, we can discover to what extent a child of a particular age engages with, and how they physically interact with, existing applications. This information in turn provides the basis for design of new child-centred applications which can then be subject to the same comprehensive child use analysis using our framework. The work focuses on the first aspect, namely, the monitoring and analysis of current child use of smartphones. Experiments show the value of this approach and interesting results have been obtained from this precise monitoring of child smartphone usage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

User Quality of Experience (QoE) is a subjective entity and difficult to measure. One important aspect of it, User Experience (UX), corresponds to the sensory and emotional state of a user. For a user interacting through a User Interface (UI), precise information on how they are using the UI can contribute to understanding their UX, and thereby understanding their QoE. As well as a user’s use of the UI such as clicking, scrolling, touching, or selecting, other real-time digital information about the user such as from smart phone sensors (e.g. accelerometer, light level) and physiological sensors (e.g. heart rate, ECG, EEG) could contribute to understanding UX. Baran is a framework that is designed to capture, record, manage and analyse the User Digital Imprint (UDI) which, is the data structure containing all user context information. Baran simplifies the process of collecting experimental information in Human and Computer Interaction (HCI) studies, by recording comprehensive real-time data for any UI experiment, and making the data available as a standard UDI data structure. This paper presents an overview of the Baran framework, and provides an example of its use to record user interaction and perform some basic analysis of the interaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A interação homem-máquina tem evoluído significativamente nos últimos anos, a ponto de permitir desenvolver soluções adequadas para apoio a pessoas que possuem um certo tipo de limitação física ou cognitiva. O desenvolvimento de técnicas naturais e intuitivas de interação, as chamadas Natural User Interface (NUI), permitem, hoje, que pessoas que estejam acamadas e/ou com incapacidade motora possam executar um conjunto de ações por intermédio de gestos, aumentando assim a sua qualidade de vida. A solução implementada neste projecto é baseada em processamento de imagem e visão por computador através do sensor 3D Kinect e consiste numa interface natural para o desenvolvimento de uma aplicação que reconheça gestos efetuados por uma mão humana. Os gestos identificados pela aplicação acionam um conjunto de ações adequados a uma pessoa acamada, como, por exemplo, acionar a emergência, ligar ou desligar a TV ou controlar a inclinação da cama. O processo de desenvolvimento deste projeto implicou várias etapas. Inicialmente houve um trabalho intenso de investigação sobre as técnicas e tecnologias consideradas importantes para a realização do trabalho - a etapa de investigação, a qual acompanhou praticamente todo o processo. A segunda etapa consistiu na configuração do sistema ao nível do hardware e do software. Após a configuração do sistema, obtiveram-se os primeiros dados do sensor 3D Kinect, os quais foram convertidos num formato mais apropriado ao seu posterior tratamento. A segmentação da mão permitiu posteriormente o reconhecimento de gestos através da técnica de matching para os seis gestos implementados. Os resultados obtidos são satisfatórios, tendo-se contabilizado cerca de 96% de resultados válidos. A área da saúde e bem-estar tem necessidade de aplicações que melhorem a qualidade de vida de pessoas acamadas, nesse sentido, o protótipo desenvolvido faz todo o sentido na sociedade actual, onde se verifica o envelhecimento da população.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La tesi affronta il tema del design applicato all’ambito healthcare, in particolare la ricerca è indirizzata all’approfondimento della malattia celiaca. Attraverso un approccio integrato al design, è stato progettato un servizio volto a sostenere il paziente celiaco neo-diagnosticato nei 30 giorni immediatamente successivi alla diagnosi. Il progetto si compone di una serie di strumenti riprogettati a partire dai servizi promossi dall’Associazione Italiana Celiachia, disegnati a misura di utente, con l’obiettivo di semplificare il contatto con l’Associazione e coinvolgere, informare e sensibilizzare, sia gli attori interni che gli attori esterni al contesto. È stato studiato l’aspetto psicologico e psico-sociale della malattia per una progettazione che tenesse conto dei reali bisogni e delle necessità dei pazienti celiaci, così che l’esperienza di diagnosi risulti meno impattante e sia facilitato il passaggio verso un cambiamento dello stile di vita.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generally, quadriplegic individuals have difficulties performing object manipulation. Toward satisfactory manipulation, reach and grasp movements must be performed with voluntary control, and for that, grasp force feedback is essential. A hybrid system aiming at partial upper limb sensory-motor restoration for quadriplegics was built. Such device is composed of an elbow dynamic orthosis that provides elbow flexion/extension (range was approximately from 20 degrees to 120 degrees, and average angular speed was approximately 15 degrees/s) with forearm support, a wrist static orthosis and neuromuscular electrical stimulation for grasping generation, and a glove with force sensors that allows grasping force feedback. The glove presents two user interface modes: visual by light emitting diodes or audio emitted by buzzer. Voice control of the entire system (elbow dynamic orthosis and electrical stimulator) is performed by the patient. The movements provided by the hybrid system, combined with the scapular and shoulder movements performed by the patient, can aid quadriplegic individuals in tasks that involve reach and grasp movements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The University of Queensland, Australia has developed Fez, a world-leading user-interface and management system for Fedora-based institutional repositories, which bridges the gap between a repository and users. Christiaan Kortekaas, Andrew Bennett and Keith Webster will review this open source software that gives institutions the power to create a comprehensive repository solution without the hassle..

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.