910 resultados para uniform energy distribution
Resumo:
This work aimed to study the energy distribution in protected environment during the winter of 2005. A plastic tunnel (27.5 m long, 7.5 m wide, 3.2 m high in the center and 2.00 m high in both lateral sides) was covered with polyethylene 100 micra and black shadow screen (sombrite) in lateral sides at the FCA/UNESP, Botucatu - SP. 142 minievaporimeters (500 ml volume and 147 cm2 area) were evenly distributed and set up at three heights: 0.40 m; 0.80 m and 1.20 m from soil surface in order to analyze energy distribution along the studied area. The greenhouse longitudinal axis was northwest/southeast, based on true north. Geosatistics principles and the GS+ Program were adopted to compare variables. From obtained results, it was concluded that there were significant evaporation variations at different points anf heights; the highest values were the ones closest to the soil surface (0.40m) in July and at highest heights (0.80 and 1.20m). Highest evaporations occurred in the southeastern side of the greenhouse.
Resumo:
Due to great difficulty of penetration of drugs through skin, different organized systems, such as liposomes, have been studied in order to increase percutaneous penetration. The aims of this work were to obtain and characterize small unilamellar liposomes containing caffeine (CAF). Liposomes composed by soy phosphatidylcholine - PS (40 mM) or hydrogenated PS - PSH (40 mM), with and without cholesterol - CHO (6 mM) and CAF (30 mg/mL), were characterized by size distribution, determination of mean diameter and encapsulation efficiency. Uniform size distribution with low polidispersity was observed. The mean of diameters obtained were: PS/CHO (64 nm), PS (80 nm), PSH/CHO (85 nm), PS/CAF (145 nm), PS/CHO/CAF (147 nm), PSH/CHO/CAF (152 nm), PSH (166 nm) and PSH/CAF (481 nm). The obtained encapsulation efficiency was 10.84% for PSH/CHO/CAF, followed by PS/CHO (6.61%), PSH/CAF (3.07%) and PS/CAF (1.57%).
Resumo:
The need for high reliability and environmental concerns are making the underground networks the most appropriate choice of energy distribution. However, like any other system, underground distribution systems are not free of failures. In this context, this work presents an approach to study underground systems using computational tools by integrating the software PSCAD/EMTDC with artificial neural networks to assist fault location in power distribution systems. Targeted benefits include greater accuracy and reduced repair time. The results presented here shows the feasibility of the proposed approach. © 2012 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC