932 resultados para underwater
Resumo:
In this paper we consider the implementation of time and energy efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected to the results of the application of the maximum principle to the controlled mechanical system. We use a numerical algorithm to compute efficient trajectories designed using geometric control theory to optimize a given cost function. Experimental results are shown for the time minimization problem.
Resumo:
Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.
Resumo:
Coral reefs are biologically complex ecosystems that support a wide variety of marine organisms. These are fragile communities under enormous threat from natural and human-based influences. Properly assessing and measuring the growth and health of reefs is essential to understanding impacts of ocean acidification, coastal urbanisation and global warming. In this paper, we present an innovative 3-D reconstruction technique based on visual imagery as a non-intrusive, repeatable, in situ method for estimating physical parameters, such as surface area and volume for efficient assessment of long-term variability. The reconstruction algorithms are presented, and benchmarked using an existing data set. We validate the technique underwater, utilising a commercial-off-the-shelf camera and a piece of staghorn coral, Acropora cervicornis. The resulting reconstruction is compared with a laser scan of the coral piece for assessment and validation. The comparison shows that 77% of the pixels in the reconstruction are within 0.3 mm of the ground truth laser scan. Reconstruction results from an unknown video camera are also presented as a segue to future applications of this research.
Resumo:
In this paper, we examine the use of a Kalman filter to aid in the mission planning process for autonomous gliders. Given a set of waypoints defining the planned mission and a prediction of the ocean currents from a regional ocean model, we present an approach to determine the best, constant, time interval at which the glider should surface to maintain a prescribed tracking error, and minimizing time on the ocean surface. We assume basic parameters for the execution of a given mission, and provide the results of the Kalman filter mission planning approach. These results are compared with previous executions of the given mission scenario.
Resumo:
Ocean processes are complex and have high variability in both time and space. Thus, ocean scientists must collect data over long time periods to obtain a synoptic view of ocean processes and resolve their spatiotemporal variability. One way to perform these persistent observations is to utilise an autonomous vehicle that can remain on deployment for long time periods. However, such vehicles are generally underactuated and slow moving. A challenge for persistent monitoring with these vehicles is dealing with currents while executing a prescribed path or mission. Here we present a path planning method for persistent monitoring that exploits ocean currents to increase navigational accuracy and reduce energy consumption.
Resumo:
Topographic structural complexity of a reef is highly correlated to coral growth rates, coral cover and overall levels of biodiversity, and is therefore integral in determining ecological processes. Modeling these processes commonly includes measures of rugosity obtained from a wide range of different survey techniques that often fail to capture rugosity at different spatial scales. Here we show that accurate estimates of rugosity can be obtained from video footage captured using underwater video cameras (i.e., monocular video). To demonstrate the accuracy of our method, we compared the results to in situ measurements of a 2m x 20m area of forereef from Glovers Reef atoll in Belize. Sequential pairs of images were used to compute fine scale bathymetric reconstructions of the reef substrate from which precise measurements of rugosity and reef topographic structural complexity can be derived across multiple spatial scales. To achieve accurate bathymetric reconstructions from uncalibrated monocular video, the position of the camera for each image in the video sequence and the intrinsic parameters (e.g., focal length) must be computed simultaneously. We show that these parameters can be often determined when the data exhibits parallax-type motion, and that rugosity and reef complexity can be accurately computed from existing video sequences taken from any type of underwater camera from any reef habitat or location. This technique provides an infinite array of possibilities for future coral reef research by providing a cost-effective and automated method of determining structural complexity and rugosity in both new and historical video surveys of coral reefs.
Resumo:
Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.
Resumo:
Recent efforts in mission planning for underwater vehicles have utilised predictive models to aid in navigation, optimal path planning and drive opportunistic sampling. Although these models provide information at a unprecedented resolutions and have proven to increase accuracy and effectiveness in multiple campaigns, most are deterministic in nature. Thus, predictions cannot be incorporated into probabilistic planning frameworks, nor do they provide any metric on the variance or confidence of the output variables. In this paper, we provide an initial investigation into determining the confidence of ocean model predictions based on the results of multiple field deployments of two autonomous underwater vehicles. For multiple missions conducted over a two-month period in 2011, we compare actual vehicle executions to simulations of the same missions through the Regional Ocean Modeling System in an ocean region off the coast of southern California. This comparison provides a qualitative analysis of the current velocity predictions for areas within the selected deployment region. Ultimately, we present a spatial heat-map of the correlation between the ocean model predictions and the actual mission executions. Knowing where the model provides unreliable predictions can be incorporated into planners to increase the utility and application of the deterministic estimations.
Resumo:
In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.
Resumo:
Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio–temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.
Resumo:
Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.
Resumo:
This paper describes a texture recognition based method for segmenting kelp from images collected in highly dynamic shallow water environments by an Autonomous Underwater Vehicle (AUV). A particular challenge is image quality that is affected by uncontrolled lighting, reduced visibility, significantly varying perspective due to platform egomotion, and kelp sway from wave action. The kelp segmentation approach uses the Mahalanobis distance as a way to classify Haralick texture features from sub-regions within an image. The results illustrate the applicability of the method to classify kelp allowing construction of probability maps of kelp masses across a sequence of images.
Resumo:
The operation of Autonomous Underwater Vehicles (AUVs) within underwater sensor network fields provides an opportunity to reuse the network infrastructure for long baseline localisation of the AUV. Computationally efficient localisation can be accomplished using off-the-shelf hardware that is comparatively inexpensive and which could already be deployed in the environment for monitoring purposes. This paper describes the development of a particle filter based localisation system which is implemented onboard an AUV in real-time using ranging information obtained from an ad-hoc underwater sensor network. An experimental demonstration of this approach was conducted in a lake with results presented illustrating network communication and localisation performance.
Resumo:
This paper describes the development of a novel vision-based autonomous surface vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an autonomous underwater vehicle, at the water's surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force based docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. Simulated and experimental results are presented demonstrating the autonomous vision- based docking strategy on a proof-of-concept vehicle.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.