958 resultados para ultra-high-vacuum magneto-optical trap
Resumo:
The aim of this guidance paper of the European Psychiatric Association is to provide evidence-based recommendations on the early detection of a clinical high risk (CHR) for psychosis in patients with mental problems. To this aim, we conducted a meta-analysis of studies reporting on conversion rates to psychosis in non-overlapping samples meeting any at least any one of the main CHR criteria: ultra-high risk (UHR) and/or basic symptoms criteria. Further, effects of potential moderators (different UHR criteria definitions, single UHR criteria and age) on conversion rates were examined. Conversion rates in the identified 42 samples with altogether more than 4000 CHR patients who had mainly been identified by UHR criteria and/or the basic symptom criterion ‘cognitive disturbances’ (COGDIS) showed considerable heterogeneity. While UHR criteria and COGDIS were related to similar conversion rates until 2-year follow-up, conversion rates of COGDIS were significantly higher thereafter. Differences in onset and frequency requirements of symptomatic UHR criteria or in their different consideration of functional decline, substance use and co-morbidity did not seem to impact on conversion rates. The ‘genetic risk and functional decline’ UHR criterion was rarely met and only showed an insignificant pooled sample effect. However, age significantly affected UHR conversion rates with lower rates in children and adolescents. Although more research into potential sources of heterogeneity in conversion rates is needed to facilitate improvement of CHR criteria, six evidence-based recommendations for an early detection of psychosis were developed as a basis for the EPA guidance on early intervention in CHR states.
Resumo:
Laminated sediment records from the oxygen minimum zone in the Arabian Sea offer unique ultrahigh-resolution archives for deciphering climate variability in the Arabian Sea region. Although numerous analytical techniques are available it has become increasingly popular during the past decade to analyze relative variations of sediment cores' chemical signature by non-destructive X-ray fluorescence (XRF) core scanning. We carefully selected an approximately 5 m long sediment core from the northern Arabian Sea (GeoB12309-5: 24°52.3' N; 62°59.9' E, 956 m water depth) for a detailed, comparative study of high-resolution techniques, namely non-destructive XRF core scanning (0.8 mm resolution) and ICP-MS/OES analysis on carefully selected, discrete samples (1 mm resolution). The aim of our study was to more precisely define suitable chemical elements that can be accurately analyzed and to determine which elemental ratios can be interpretated down to sub-millimeter-scale resolutions. Applying the Student's t-test our results show significantly correlating (1% significance level) elemental patterns for all S, Ca, Fe, Zr, Rb, and Sr, as well as the K/Ca, Fe/Ti and Ti/Al ratios that are all related to distinct lithological changes. After careful consideration of all errors for the ICP analysis we further provide respective factors of XRF Core Scanner software error's underestimation by applying Chi-square-tests, which is especially relevant for elements with high count rates. As demonstrated by these new, ultra-high resolution data core scanning has major advantages (high-speed, low costs, few sample preparation steps) and represents an increasingly required alternative over the time consuming, expensive, elaborative, and destructive wet chemical analyses (e.g., by ICP-MS/OES after acid digestions), and meanwhile also provides high-quality data in unprecedented resolution.
Advances in the modeling, characterization and reliability of concentrator multijunction solar cells
Resumo:
Los sistemas de concentración fotovoltaica (CPV) parecen ser una de las vías más prometedoras para generar electricidad a gran escala a precios competitivos. La investigación actual se centra en aumentar la eficiencia y la concentración de los sistemas para abaratar costes. Al mismo tiempo se investiga sobre la fiabilidad de los diferentes componentes que integran un sistema de concentración, ya que para que los sistemas de concentración sean competitivos es necesario que tengan una fiabilidad al menos similar a los sistemas basados en células de silicio. En la presente tesis doctoral se ha llevado a cabo el estudio de aspectos avanzados de células solares multi-unión diseñadas para trabajar a concentraciones ultra-altas. Para ello, se ha desarrollado un modelo circuital tridimensional distribuido con el que simular el comportamiento de las células solares triple-unión bajo distintas condiciones de funcionamiento, así mismo se ha realizado una caracterización avanzada de este tipo de células para comprender mejor su modo de operación y así poder contribuir a mejorar su eficiencia. Finalmente, se han llevado a cabo ensayos de vida acelerados en células multiunión comerciales para conocer la fiabilidad de este tipo de células solares. Para la simulación de células solares triple-unión se ha desarrollado en la presente tesis doctoral un modelo circuital tridimensinal distribuido el cuál integra una descripción completa de la unión túnel. De este modo, con el modelo desarrollado, hemos podido simular perfiles de luz sobre la célula solar que hacen que la densidad de corriente fotogenerada sea mayor a la densidad de corriente pico de la unión túnel. El modelo desarrollado también contempla la distribución lateral de corriente en las capas semiconductoras que componen y rodean la unión túnel. Por tanto, se ha podido simular y analizar el efecto que tiene sobre el funcionamiento de la célula solar que los concentradores ópticos produzcan perfiles de luz desuniformes, tanto en nivel de irradiancia como en el contenido espectral de la luz (aberración cromática). Con el objetivo de determinar cuáles son los mecanismos de recombinación que están limitando el funcionamiento de cada subcélula que integra una triple-unión, y así intentar reducirlos, se ha llevado a cabo la caracterización eléctrica de células solares monouni ón idénticas a las subcelulas de una triple-unión. También se ha determinado la curva corriente-tensión en oscuridad de las subcélulas de GaInP y GaAs de una célula dobleunión mediante la utilización de un teorema de reciprocidad electro-óptico. Finalmente, se ha analizado el impacto de los diferentes mecanismos de recombinación en el funcionamiento de la célula solar triple-unión en concentración. Por último, para determinar la fiabilidad de este tipo de células, se ha llevado a cabo un ensayo de vida acelerada en temperatura en células solares triple-unión comerciales. En la presente tesis doctoral se describe el diseño del ensayo, el progreso del mismo y los datos obtenidos tras el análisis de los resultados preliminares. Abstract Concentrator photovoltaic systems (CPV) seem to be one of the most promising ways to generate electricity at competitive prices. Nowadays, the research is focused on increasing the efficiency and the concentration of the systems in order to reduce costs. At the same time, another important area of research is the study of the reliability of the different components which make up a CPV system. In fact, in order for a CPV to be cost-effective, it should have a warranty at least similar to that of the systems based on Si solar cells. In the present thesis, we will study in depth the behavior of multijunction solar cells under ultra-high concentration. With this purpose in mind, a three-dimensional circuital distributed model which is able to simulate the behavior of triple-junction solar cells under different working conditions has been developed. Also, an advanced characterization of these solar cells has been carried out in order to better understand their behavior and thus contribute to improving efficiency. Finally, accelerated life tests have been carried out on commercial lattice-matched triple-junction solar cells in order to determine their reliability. In order to simulate triple-junction solar cells, a 3D circuital distributed model which integrates a full description of the tunnel junction has been developed. We have analyzed the behavior of the multijunction solar cell under light profiles which cause the current density photo-generated in the solar cell to be higher than the tunnel junction’s peak current density. The advanced model developed also takes into account the lateral current spreading through the semiconductor layers which constitute and surround the tunnel junction. Therefore, the effects of non-uniform light profiles, in both irradiance and the spectral content produced by the concentrators on the solar cell, have been simulated and analyzed. In order to determine which recombination mechanisms are limiting the behavior of each subcell in a triple-junction stack, and to try to reduce them when possible, an electrical characterization of single-junction solar cells that resemble the subcells in a triplejunction stack has been carried out. Also, the dark I-V curves of the GaInP and GaAs subcells in a dual-junction solar cell have been determined by using an electro-optical reciprocity theorem. Finally, the impact of the different recombination mechanisms on the behavior of the triple-junction solar cell under concentration has been analyzed. In order to determine the reliability of these solar cells, a temperature accelerated life test has been carried out on commercial triple-junction solar cells. In the present thesis, the design and the evolution of the test, as well as the data obtained from the analysis of the preliminary results, are presented.
Resumo:
Los fieltros son una familia de materiales textiles constituidos por una red desordenada de fibras conectadas por medio de enlaces térmicos, químicos o mecánicos. Presentan menor rigidez y resistencia (al igual que un menor coste de procesado) que sus homólogos tejidos, pero mayor deformabilidad y capacidad de absorción de energía. Los fieltros se emplean en diversas aplicaciones en ingeniería tales como aislamiento térmico, geotextiles, láminas ignífugas, filtración y absorción de agua, impacto balístico, etc. En particular, los fieltros punzonados fabricados con fibras de alta resistencia presentan una excelente resistencia frente a impacto balístico, ofreciendo las mismas prestaciones que los materiales tejidos con un tercio de la densidad areal. Sin embargo, se sabe muy poco acerca de los mecanismos de deformación y fallo a nivel microscópico, ni sobre como influyen en las propiedades mecánicas del material. Esta carencia de conocimiento dificulta la optimización del comportamiento mecánico de estos materiales y también limita el desarrollo de modelos constitutivos basados en mecanismos físicos, que puedan ser útiles en el diseño de componentes estructurales. En esta tesis doctoral se ha llevado a cabo un estudio minucioso con el fin de determinar los mecanismos de deformación y las propiedades mecánicas de fieltros punzonados fabricados con fibras de polietileno de ultra alto peso molecular. Los procesos de deformación y disipación de energía se han caracterizado en detalle por medio de una combinación de técnicas experimentales (ensayos mecánicos macroscópicos a velocidades de deformación cuasi-estáticas y dinámicas, impacto balístico, ensayos de extracción de una o múltiples fibras, microscopía óptica, tomografía computarizada de rayos X y difracción de rayos X de gran ángulo) que proporcionan información de los mecanismos dominantes a distintas escalas. Los ensayos mecánicos macroscópicos muestran que el fieltro presenta una resistencia y ductilidad excepcionales. El estado inicial de las fibras es curvado, y la carga se transmite por el fieltro a través de una red aleatoria e isótropa de nudos creada por el proceso de punzonamiento, resultando en la formación de una red activa de fibra. La rotación y el estirado de las fibras activas es seguido por el deslizamiento y extracción de la fibra de los puntos de anclaje mecánico. La mayor parte de la resistencia y la energía disipada es proporcionada por la extracción de las fibras activas de los nudos, y la fractura final tiene lugar como consecuencia del desenredo total de la red en una sección dada donde la deformación macroscópica se localiza. No obstante, aunque la distribución inicial de la orientación de las fibras es isótropa, las propiedades mecánicas resultantes (en términos de rigidez, resistencia y energía absorbida) son muy anisótropas. Los ensayos de extracción de múltiples fibras en diferentes orientaciones muestran que la estructura de los nudos conecta más fibras en la dirección transversal en comparación con la dirección de la máquina. La mejor interconectividad de las fibras a lo largo de la dirección transversal da lugar a una esqueleto activo de fibras más denso, mejorando las propiedades mecánicas. En términos de afinidad, los fieltros deformados a lo largo de la dirección transversal exhiben deformación afín (la deformación macroscópica transfiere directamente a las fibras por el material circundante), mientras que el fieltro deformado a lo largo de la dirección de la máquina presenta deformación no afín, y la mayor parte de la deformación macroscópica no es transmitida a las fibras. A partir de estas observaciones experimentales, se ha desarrollado un modelo constitutivo para fieltros punzonados confinados por enlaces mecánicos. El modelo considera los efectos de la deformación no afín, la conectividad anisótropa inducida durante el punzonamiento, la curvatura y re-orientación de la fibra, así como el desenredo y extracción de la fibra de los nudos. El modelo proporciona la respuesta de un mesodominio del material correspondiente al volumen asociado a un elemento finito, y se divide en dos bloques. El primer bloque representa el comportamiento de la red y establece la relación entre el gradiente de deformación macroscópico y la respuesta microscópica, obtenido a partir de la integración de la respuesta de las fibras en el mesodominio. El segundo bloque describe el comportamiento de la fibra, teniendo en cuenta las características de la deformación de cada familia de fibras en el mesodominio, incluyendo deformación no afín, estiramiento, deslizamiento y extracción. En la medida de lo posible, se ha asignado un significado físico claro a los parámetros del modelo, por lo que se pueden identificar por medio de ensayos independientes. Las simulaciones numéricas basadas en el modelo se adecúan a los resultados experimentales de ensayos cuasi-estáticos y balísticos desde el punto de vista de la respuesta mecánica macroscópica y de los micromecanismos de deformación. Además, suministran información adicional sobre la influencia de las características microstructurales (orientación de la fibra, conectividad de la fibra anisótropa, afinidad, etc) en el comportamiento mecánico de los fieltros punzonados. Nonwoven fabrics are a class of textile material made up of a disordered fiber network linked by either thermal, chemical or mechanical bonds. They present lower stiffness and strength (as well as processing cost) than the woven counterparts but much higher deformability and energy absorption capability and are used in many different engineering applications (including thermal insulation, geotextiles, fireproof layers, filtration and water absorption, ballistic impact, etc). In particular, needle-punched nonwoven fabrics manufactured with high strength fibers present an excellent performance for ballistic protection, providing the same ballistic protection with one third of the areal weight as compared to dry woven fabrics. Nevertheless, very little is known about their deformation and fracture micromechanisms at the microscopic level and how they contribute to the macroscopic mechanical properties. This lack of knowledge hinders the optimization of their mechanical performance and also limits the development of physically-based models of the mechanical behavior that can be used in the design of structural components with these materials. In this thesis, a thorough study was carried out to ascertain the micromechanisms of deformation and the mechanical properties of a needle-punched nonwoven fabric made up by ultra high molecular weight polyethylene fibers. The deformation and energy dissipation processes were characterized in detail by a combination of experimental techniques (macroscopic mechanical tests at quasi-static and high strain rates, ballistic impact, single fiber and multi fiber pull-out tests, optical microscopy, X-ray computed tomography and wide angle X-ray diffraction) that provided information of the dominant mechanisms at different length scales. The macroscopic mechanical tests showed that the nonwoven fabric presented an outstanding strength and energy absorption capacity. It was found that fibers were initially curved and the load was transferred within the fabric through the random and isotropic network of knots created by needlepunching, leading to the formation of an active fiber network. Uncurling and stretching of the active fibers was followed by fiber sliding and pull-out from the entanglement points. Most of the strength and energy dissipation was provided by the extraction of the active fibers from the knots and final fracture occurred by the total disentanglement of the fiber network in a given section at which the macroscopic deformation was localized. However, although the initial fiber orientation distribution was isotropic, the mechanical properties (in terms of stiffness, strength and energy absorption) were highly anisotropic. Pull-out tests of multiple fibers at different orientations showed that structure of the knots connected more fibers in the transverse direction as compared with the machine direction. The better fiber interconnection along the transverse direction led to a denser active fiber skeleton, enhancing the mechanical response. In terms of affinity, fabrics deformed along the transverse direction essentially displayed affine deformation {i.e. the macroscopic strain was directly transferred to the fibers by the surrounding fabric, while fabrics deformed along the machine direction underwent non-affine deformation, and most of the macroscopic strain was not transferred to the fibers. Based on these experimental observations, a constitutive model for the mechanical behavior of the mechanically-entangled nonwoven fiber network was developed. The model accounted for the effects of non-affine deformation, anisotropic connectivity induced by the entanglement points, fiber uncurling and re-orientation as well as fiber disentanglement and pull-out from the knots. The model provided the constitutive response for a mesodomain of the fabric corresponding to the volume associated to a finite element and is divided in two blocks. The first one was the network model which established the relationship between the macroscopic deformation gradient and the microscopic response obtained by integrating the response of the fibers in the mesodomain. The second one was the fiber model, which took into account the deformation features of each set of fibers in the mesodomain, including non-affinity, uncurling, pull-out and disentanglement. As far as possible, a clear physical meaning is given to the model parameters, so they can be identified by means of independent tests. The numerical simulations based on the model were in very good agreement with the experimental results of in-plane and ballistic mechanical response of the fabrics in terms of the macroscopic mechanical response and of the micromechanisms of deformation. In addition, it provided additional information about the influence of the microstructural features (fiber orientation, anisotropic fiber connectivity, affinity) on the mechanical performance of mechanically-entangled nonwoven fabrics.
Resumo:
As demonstrated by anatomical and physiological studies, the cerebral cortex consists of groups of cortical modules, each comprising populations of neurons with similar functional properties. This functional modularity exists in both sensory and association neocortices. However, the role of such cortical modules in perceptual and cognitive behavior is unknown. To aid in the examination of this issue we have applied the high spatial resolution optical imaging methodology to the study of awake, behaving animals. In this paper, we report the optical imaging of orientation domains and blob structures, approximately 100–200 μm in size, in visual cortex of the awake and behaving monkey. By overcoming the spatial limitations of other existing imaging methods, optical imaging will permit the study of a wide variety of cortical functions at the columnar level, including motor and cognitive functions traditionally studied with positron-emission tomography or functional MRI techniques.
Resumo:
Neste estudo foram analisados experimentalmente o comportamento de 24 pilares curtos de Concreto de Ultra Alta Resistência - CUAR, confinados por armaduras helicoidais, avaliando especificamente os acréscimos de resistência e ductilidade obtidos com diferentes níveis de pressão lateral de confinamento. Na etapa experimental foram realizados ensaios de pilares curtos de CUAR com as seguintes características: - seção circular de 7,2 cm de diâmetro e comprimento de 23 cm, e quatro níveis de resistência à compressão do concreto sendo eles, 165, 175, 200 e 229 MPa, dosados sem e com adição de fibras metálicas; - diferentes espaçamentos das armaduras helicoidais, de modo que fossem obtidas situações com baixo, médio e alto índice de confinamento e taxa de armadura longitudinal fixa. Os ensaios de compressão centrada foram realizados com controle de deslocamento, de modo que foram obtidas as curvas força x deslocamento completas. Constatou-se que a seção resistente dos pilares de CUAR é a formada pelo núcleo de concreto confinado, área delimitada pelo eixo da armadura transversal. Observou-se que o CUAR com fibras metálicas apresenta maior deformação do núcleo de concreto confinado em relação ao núcleo de concreto confinado de CUAR sem adição de fibras metálicas, indicando dessa forma, que os pilares de CUAR com fibras metálicas apresentam comportamento mais dúctil. Para as situações de alto confinamento foram gerados ao concreto do núcleo confinado significativos acréscimos de resistência e deformação axial, aumentando a resistência do concreto confinado em relação a resistência do concreto não confinado em: 82,26%, 75,34%, 90,46% e 70,51%, respectivamente, e as deformações axiais do concreto confinado em relação a deformação axial do concreto não confinado em: 433%, 474%, 647% e 550%. Finalmente, acredita-se que os resultados obtidos poderão trazer subsídios para aplicações futuras desta técnica de confinamento na construção de novos elementos estruturais e no reforço de pilares submetidos a elevados níveis de solicitação axial.
Resumo:
Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.
Resumo:
Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.
Resumo:
The metamorphic belt of the Western Alps was subjected to widespread extensional tectonism at the end of the Eocene (ca. 45-35 Ma). Extension was accommodated by hinterland-directed movements along gently inclined extensional shear zones, which facilitated rapid exhumation of high-pressure and ultra-high-pressure rocks. This deformation resulted in a normal metamorphic sequence. Extension in the inner parts of the Western Alps was coeval with shortening at the front of the belt (foreland-directed thrusts), which took place during decompression, and emplaced higher grade metamorphic units over lower grade metamorphic rocks, thus forming an inverse metamorphic sequence. Two mechanisms for this extensional episode are discussed: (1) collapse of an overthickened lithosphere, and (2) internal readjustments within the orogenic wedge due to subduction channel dynamics. We favour the latter mechanism because it can account for the development of the observed inverse and normal metamorphic sequences along foreland-directed thrusts and hinterland-directed detachments, respectively. This hypothesis is supported by published structural, metamorphic and geochronological data from four geological transects through the Western Alps. This study also emphasizes the importance of post-shearing deformation (e.g. horizontal buckling versus vertical flattening), which can modify the distribution of hinterland- and foreland-directed shear zones in orogenic belts. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This thesis examines options for high capacity all optical networks. Specifically optical time division multiplexed (OTDM) networks based on electro-optic modulators are investigated experimentally, whilst comparisons with alternative approaches are carried out. It is intended that the thesis will form the basis of comparison between optical time division multiplexed networks and the more mature approach of wavelength division multiplexed networks. Following an introduction to optical networking concepts, the required component technologies are discussed. In particular various optical pulse sources are described with the demanding restrictions of optical multiplexing in mind. This is followed by a discussion of the construction of multiplexers and demultiplexers, including favoured techniques for high speed clock recovery. Theoretical treatments of the performance of Mach Zehnder and electroabsorption modulators support the design criteria that are established for the construction of simple optical time division multiplexed systems. Having established appropriate end terminals for an optical network, the thesis examines transmission issues associated with high speed RZ data signals. Propagation of RZ signals over both installed (standard fibre) and newly commissioned fibre routes are considered in turn. In the case of standard fibre systems, the use of dispersion compensation is summarised, and the application of mid span spectral inversion experimentally investigated. For green field sites, soliton like propagation of high speed data signals is demonstrated. In this case the particular restrictions of high speed soliton systems are discussed and experimentally investigated, namely the increasing impact of timing jitter and the downward pressure on repeater spacings due to the constraint of the average soliton model. These issues are each addressed through investigations of active soliton control for OTDM systems and through investigations of novel fibre types respectively. Finally the particularly remarkable networking potential of optical time division multiplexed systems is established, and infinite node cascadability using soliton control is demonstrated. A final comparison of the various technologies for optical multiplexing is presented in the conclusions, where the relative merits of the technologies for optical networking emerges as the key differentiator between technologies.
Resumo:
This thesis describes a detailed study of advanced fibre grating devices using Bragg (FBG) and long-period (LPG) structures and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below. One of the most important contributions from the research work presented in this thesis is a systematic theoretical study of many distinguishing structures of fibre gratings. Starting from the Maxwell equations, the coupled-mode equations for both FBG and LPG were derived and the mode-overlap factor was analytically discussed. Computing simulation programmes utilising matrix transform method based on the models built upon the coupled-mode equations were developed, enabling simulations of spectral response in terms of reflectivity, bandwidth, sidelobes and dispersion of gratings of different structures including uniform and chirped, phase-shifted, Moiré, sampled Bragg gratings, phase-shifted and cascaded long-period gratings. Although the majority of these structures were modelled numerically, analytical expressions for some complex structures were developed with a clear physical picture. Several apodisation functions were proposed to improve sidelobe suppression, which guided effective production of practical devices for demanding applications. Fibre grating fabrication is the other major part involved in the Ph.D. programme. Both the holographic and scan-phase-mask methods were employed to fabricate Bragg and long-period gratings of standard and novel structures. Significant improvements were particularly made in the scan-phase-mask method to enable the arbitrarily tailoring of the spectral response of grating devices. Two specific techniques - slow-shifting and fast-dithering the phase-mask implemented by a computer controlled piezo - were developed to write high quality phase-shifted, sampled and apodised gratings. A large number of LabVIEW programmes were constructed to implement standard and novel fabrication techniques. In addition, some fundamental studies of grating growth in relating to the UV exposure and hydrogenation induced index were carried out. In particular, Type IIa gratings in non-hydrogenated B/Ge co-doped fibres and a re-generated grating in hydrogenated B/Ge fibre were investigated, showing a significant observation of thermal coefficient reduction. Optical sensing applications utilising fibre grating devices form the third major part of the research work presented in this thesis. Several experiments of novel sensing and sensing-demodulating were implemented. For the first time, an intensity and wavelength dual-coding interrogation technique was demonstrated showing significantly enhanced capacity of grating sensor multiplexing. Based on the mode-splitting measurement, instead of using conventional wavelength-shifting detection technique, successful demonstrations were also made for optical load and bend sensing of ultra-high sensitivity employing LPG structures. In addition, edge-filters and low-loss high-rejection bandpass filters of 50nm stop-band were fabricated for application in optical sensing and high-speed telecommunication systems
Resumo:
Effect of the carrier shape in the ultra high dense wavelength division multiplexing (WDM) return to zero differential phase shift keying (RZ-DPSK) transmission has been examined through numerical optimization of the pulse form, duty cycle and narrow multiplex/de-multiplex (MUX/DEMUX) filtering parameters. © 2007 Springer Science+Business Media, LLC.
Resumo:
The growth and magnetic properties of epitaxial magnetite Fe3O4 on GaAs(100) have been studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. The epitaxial Fe3O4 films were synthesized by in situ post growth annealing of ultrathin epitaxial Fe films at 500K in an oxygen partial pressure of 5×10−5mbar. The XMCD measurements show characteristic contributions from different sites of the ferrimagnetic magnetite unit cell, namely, Fetd3+, Feoh2+, and Feoh3+. The epitaxial relationship was found to be Fe3O4(100)⟨011⟩∕∕GaAs(100)⟨010⟩ with the unit cell of Fe3O4 rotated by 45° to match that of GaAs(100) substrate. The films show a uniaxial magnetic anisotropy in a thickness range of about 2.0–6.0nm with the easy axes along the [011] direction of the GaAs(100) substrate.
Resumo:
We investigate the transmission performance of advanced modulation formats in nonlinear regenerative channels based on cascaded phase sensitive amplifiers. We identify the impact of amplitude and phase noise dynamics along the transmission line and show that after a cascade of regenerators, densely packed single ring PSK constellations outperform multi-ring constellations. The results of this study will greatly simplify the design of future nonlinear regenerative channels for ultra-high capacity transmission. © 2013 Optical Society of America.
Resumo:
A highly sensitive liquid-level sensor based on dual-wavelength single-longitudinal-mode fiber laser is proposed and demonstrated. The laser is formed by exploiting two parallel arranged phase-shift fiber Bragg gratings (ps-FBGs), acting as ultra-narrow bandwidth filters, into a doublering resonators. By beating the dual-wavelength lasing output, a stable microwave signal with frequency stability better than 5 MHz is obtained. The generated beat frequency varies with the change of dual-wavelength spacing. Based on this characteristic, with one ps-FBG serving as the sensing element and the other one acting as the reference element, a highly sensitive liquid level sensor is realized by monitoring the beat frequency shift of the laser. The sensor head is directly bonded to a float which can transfer buoyancy into axial strain on the fiber without introducing other elastic elements. The experimental results show that an ultra-high liquidlevel sensitivity of 2.12 × 107 MHz/m within the measurement range of 1.5 mm is achieved. The sensor presents multiple merits including ultra-high sensitivity, thermal insensitive, good reliability and stability. © 2012 Optical Society of America.