618 resultados para tryptophanyl tRNA synthetase
Resumo:
MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.
Resumo:
PURPOSE: To characterize perifoveal intraretinal cavities observed around full-thickness macular holes (MH) using en face optical coherence tomography and to establish correlations with histology of human and primate maculae. DESIGN: Retrospective nonconsecutive observational case series. METHODS: Macular en face scans of 8 patients with MH were analyzed to quantify the areas of hyporeflective spaces, and were compared with macular flat mounts and sections from 1 normal human donor eye and 2 normal primate eyes (Macaca fascicularis). Immunohistochemistry was used to study the distribution of glutamine synthetase, expressed by Müller cells, and zonula occludens-1, a tight-junction protein. RESULTS: The mean area of hyporeflective spaces was lower in the inner nuclear layer (INL) than in the complex formed by the outer plexiform (OPL) and the Henle fiber layers (HFL): 5.0 × 10(-3) mm(2) vs 15.9 × 10(-3) mm(2), respectively (P < .0001, Kruskal-Wallis test). In the OPL and HFL, cavities were elongated with a stellate pattern, whereas in the INL they were rounded and formed vertical cylinders. Immunohistochemistry confirmed that Müller cells followed a radial distribution around the fovea in the frontal plane and a "Z-shaped" course in the axial plane, running obliquely in the OPL and HFL and vertically in the inner layers. In addition, zonula occludens-1 co-localized with Müller cells within the complex of OPL and HFL, indicating junctions in between Müller cells and cone axons. CONCLUSION: The dual profile of cavities around MHs correlates with Müller cell morphology and is consistent with the hypothesis of intra- or extracellular fluid accumulation along these cells.
Resumo:
Mitochondrial DNA (mtDNA), a maternally inherited 16.6-Kb molecule crucial for energy production, is implicated in numerous human traits and disorders. It has been hypothesized that the presence of mutations in the mtDNA may contribute to the complex genetic basis of schizophreniadisease, due to the evidence of maternal inheritance and the presence of schizophrenia symptoms in patients affected of a mitochondrial disorder related to a mtDNA mutation. The present project aims to study the association of variants of mitochondrial DNA (mtDNA), and an increased risk of schizophrenia in a cohort of patients and controls from the same population. The entire mtDNA of 55 schizophrenia patients with an apparent maternal transmission of the disease and 38 controls was sequenced by Next Generation Sequencing (Ion Torrent PGM, Life Technologies) and compared to the reference sequence. The current method for establishing mtDNA haplotypes is Sanger sequencing, which is laborious, timeconsuming, and expensive. With the emergence of Next Generation Sequencing technologies, this sequencing process can be much more quickly and cost-efficiently. We have identified 14 variants that have not been previously reported. Two of them were missense variants: MTATP6 p.V113M and MTND5 p.F334L ,and also three variants encoding rRNA and one variant encoding tRNA. Not significant differences have been found in the number of variants between the two groups. We found that the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of the bioinformatics analysis and annotation step would be desirable to facilitate the application of NGS in mtDNA analysis.
Resumo:
Replication of human immunodeficiency virus (HIV) requires base pairing of the reverse transcriptase primer, human tRNA(Lys3), to the viral RNA. Although the major complementary base pairing occurs between the HIV primer binding sequence (PBS) and the tRNA's 3'-terminus, an important discriminatory, secondary contact occurs between the viral A-rich Loop I, 5'-adjacent to the PBS, and the modified, U-rich anticodon domain of tRNA(Lys3). The importance of individual and combined anticodon modifications to the tRNA/HIV-1 Loop I RNA's interaction was determined. The thermal stabilities of variously modified tRNA anticodon region sequences bound to the Loop I of viral sub(sero)types G and B were analyzed and the structure of one duplex containing two modified nucleosides was determined using NMR spectroscopy and restrained molecular dynamics. The modifications 2-thiouridine, s(2)U(34), and pseudouridine, Psi(39), appreciably stabilized the interaction of the anticodon region with the viral subtype G and B RNAs. The structure of the duplex results in two coaxially stacked A-form RNA stems separated by two mismatched base pairs, U(162)*Psi(39) and G(163)*A(38), that maintained a reasonable A-form helix diameter. The tRNA's s(2)U(34) stabilized the interaction between the A-rich HIV Loop I sequence and the U-rich anticodon, whereas the tRNA's Psi(39) stabilized the adjacent mismatched pairs.
Resumo:
Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications.
Resumo:
Most fishes produce free-living embryos that are exposed to environmental stressors immediately following fertilization, including pathogenic microorganisms. Initial immune protection of embryos involves the chorion, as a protective barrier, and maternally-allocated antimicrobial compounds. At later developmental stages, host-genetic effects influence susceptibility and tolerance, suggesting a direct interaction between embryo genes and pathogens. So far, only a few host genes could be identified that correlate with embryonic survival under pathogen stress in salmonids. Here, we utilized high-throughput RNA-sequencing in order to describe the transcriptional response of a non-model fish, the Alpine whitefish Coregonus palaea, to infection, both in terms of host genes that are likely manipulated by the pathogen, and those involved in an early putative immune response. Embryos were produced in vitro, raised individually, and exposed at the late-eyed stage to a virulent strain of the opportunistic fish pathogen Pseudomonas fluorescens. The pseudomonad increased embryonic mortality and affected gene expression substantially. For example, essential, upregulated metabolic pathways in embryos under pathogen stress included ion binding pathways, aminoacyl-tRNA-biosynthesis, and the production of arginine and proline, most probably mediated by the pathogen for its proliferation. Most prominently downregulated transcripts comprised the biosynthesis of unsaturated fatty acids, the citrate cycle, and various isoforms of b-cell transcription factors. These factors have been shown to play a significant role in host blood cell differentiation and renewal. With regard to specific immune functions, differentially expressed transcripts mapped to the complement cascade, MHC class I and II, TNF-alpha, and T-cell differentiation proteins. The results of this study reveal insights into how P. fluorescens impairs the development of whitefish embryos and set a foundation for future studies investigating host pathogen interactions in fish embryos.
Resumo:
TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Brf2-TBP complex bound to natural promoters, obtaining a detailed view of the molecular interactions occurring at Brf2-dependent Pol III promoters and highlighting the general structural and functional conservation of human Pol II and Pol III pre-initiation complexes. Surprisingly, our structural and functional studies unravel a Brf2 redox-sensing module capable of specifically regulating Pol III transcriptional output in living cells. Furthermore, we establish Brf2 as a central redox-sensing transcription factor involved in the oxidative stress pathway and provide a mechanistic model for Brf2 genetic activation in lung and breast cancer.
Resumo:
L'ARN polymérase 3 transcrit un petit groupe de gènes fortement exprimés et impliqués dans plusieurs mécanismes moléculaires. Les ARNs de transfert ou ARNt représentent plus ou moins la moitié du transcriptome de l'ARN polymérase 3. Ils sont directement impliqués dans la traduction des protéines en agissant comme transporteurs d'acides aminés qui sont incorporés à la chaîne naissante de polypeptides. Chez des levures cultivées dans un milieu jusqu'à épuisement des nutriments, Maf1 réprime la transcription par l'ARN polymérase 3, favorisant ainsi l'économie énergétique cellulaire. Dans un modèle de cellules de mammifères, MAF1 réprime aussi la transcription de l'ARN polymérase 3 dans des conditions de stress, cependant il n'existe aucune donnée quant à son rôle chez un mammifère vivant. Pendant mon doctorat, j'ai utilisé une souris délétée pour le gène Maf1 afin de connaître les effets de ce gène chez un mammifère. Etonnamment, la souris Maf1-‐/-‐ est résistante à l'obésité même si celle-‐ci est nourrie avec une nourriture riche en matières grasses. Des études moléculaires et de métabolomiques ont montré qu'il existe des cycles futiles de production et dégradation des lipides et des ARNt, ce qui entraîne une augmentation de la dépense énergique et favorise la résistance à l'obésité. En plus de la caractérisation de la souris Maf1-‐/-‐, pendant ma thèse j'ai également développé une méthode afin de normaliser les données de ChIP-‐sequencing. Cette méthode est fondée sur l'utilisation d'un contrôle interne, représenté ici par l'ajout d'une quantité fixe de chromatine provenant d'un organisme différent de celui étudié. La méthode a amélioré considérablement la reproductibilité des valeurs entre réplicas biologiques. Elle a aussi révélé des différences entre échantillons issus de conditions différentes. Une occupation supérieure de l'ARN polymérase 3 sur les gènes Pol 3 chez les souris Maf1 KO entraîne une augmentation du niveau de précurseurs d'ARNt, ayant pour effet probable la saturation de la machinerie de maturation des ARNt. En effet, chez les souris Maf1 KO, le pourcentage d'ARNt modifiés est plus faible que chez les souris type sauvage. Ce déséquilibre entre le niveau de précurseurs et d'ARNt matures entraîne une diminution de la traduction protéique. Ces résultats ont permis d'identifier de nouvelles fonctions pour la protéine MAF1, comme étant une protéine régulatrice à la fois de la transcription mais aussi de la traduction et en étant un cible potentielle au traitement à l'obésité. -- RNA polymerase III (Pol 3) transcribes a small set of highly expressed genes involved in different molecular mechanisms. tRNAs account for almost half of the Pol 3 transcriptome and are involved in translation, bringing a new amino into the nascent polypeptide chain. In yeast, under nutrient deprivation, Maf1 acts for cell energetic economy by repressing Pol 3 transcription. In mammalian cells, MAF1 also represses Pol 3 activity under conditions of serum deprivation or DNA damages but nothing is known about its role in a mammalian organism. During my thesis studies, I used a Maf1 KO mouse model to characterize the effects of Maf1 deletion in a living animal. Surprisingly, the MAF1 KO mouse developed an unexpected phenotype, being resistant to high fat diet-‐induced obesity and displaying an extended lifespan. Molecular and metabolomics characterizations revealed futile cycles of lipids and tRNAs, which are produced and immediately degraded, which increases energy consumption in the Maf1 KO mouse and probably explains in part the protection to obesity. Additionally to the mouse characterization, I also developed a method to normalize ChIP-‐seq data, based on the addition of a foreign chromatin to be used as an internal control. The method improved reproducibility between replicates and revealed differences of Pol 3 occupancy between WT and Maf1 KO samples that were not seen without normalization to the internal control. I then established that increased Pol 3 occupancy in the Maf1 KO mouse liver was associated with increased levels of tRNA precursor but not of mature tRNAs, the effective molecules involved in translation. The overproduction of precursor tRNAs associated with the deletion of Maf1 apparently overwhelms the tRNA processing machinery as the Maf1 KO mice have lower levels of fully modified tRNAs. This maturation defect directly impacts on translation efficiency as polysomic fractions and newly synthetized protein levels were reduced in the liver of the Maf1 KO mouse. Altogether, these results indicate new functions for MAF1, a regulator of both transcription and translation as well as a potential target for obesity treatment.
Resumo:
Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids.We analyzed whether reduced urea excretion was a consequence of higherNO ; (nitrite,nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion.There were no differences in plasma nitrate or nitrite. NO and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithinewhen comparedwith controls,whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.
Resumo:
PURPOSE: To investigate the association between polymorphisms in genes that encode enzymes involved in folate- and vitamin B12-dependent homocysteine metabolism and recurrent spontaneous abortion (RSA).METHODS: We investigated the C677T and A1298C polymorphisms of the methylenetetrahydrofalate reductase gene (MTHFR), the A2756G polymorphism of the methionine synthase gene (MS) and the 844ins68 insertion of the cystathionine beta synthetase gene (CBS). The PCR technique followed by RFLP was used to assess the polymorphisms; the serum levels of homocysteine, vitamin B12 and folate were investigated by chemiluminescence. The EPI Info Software version 6.04 was used for statistical analysis. Parametric variables were compared by Student's t-test and nonparametric variables by the Wilcoxon rank sum test.RESULTS: The frequencies of gene polymorphisms in 89 women with a history of idiopathic recurrent miscarriage and 150 controls were 19.1 and 19.6% for the C677T, insertion, 20.8 and 26% for the A1298C insertion, 14.2 and 21.9% for the A2756G insertion, and 16.4 and 18% for the 844ins68 insertion, respectively. There were no significant differences between case and control groups in any of the gene polymorphisms investigated. However, the frequency of the 844ins68 insertion in the CBS gene was higher among women with a history of loss during the third trimester of pregnancy (p=0.003). Serum homocysteine, vitamin B12 and folate levels id not differ between the polymorphisms studied in the case and control groups. However, linear regression analysis showed a dependence of serum folate levels on the maintenance of tHcy levels.CONCLUSION: The investigated gene polymorphisms and serum homocysteine, vitamin B12 and folate levels were not associated with idiopathic recurrent miscarriage in the present study. Further investigations are needed in order to confirm the role of the CBS 844ins68 insertion in recurrent miscarriage.
Resumo:
Increasing levels of atmospheric ammonia from anthropogenic sources have become a serious problem for natural vegetation. Short-term effects of different ammoniacal sources on the N metabolism of Tillandsia pohliana, an atmospheric bromeliad, were investigated. One-year-old, aseptically grown plants were transferred to a modified Knudson medium lacking N for three weeks. Plants were subsequently transferred to Knudson media supplemented with 0.5, 1.0, or 1.5 mM of N in the forms of NH3 or NH4+ as the sole N source. The activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH-NADH) were determined after 40 h. The GS activity was stimulated significantly by increasing the levels of the gaseous form. The GDH-NADH activity increased significantly under increasing N concentrations with NH3, while no significant differences were observed with NH4+ as a N source. These results may reflect a faster NH3 absorption by T. pohliana compared to NH4+ uptake. The increased activity of GDH-NADH in NH3 treatment may play a role in protecting the cells from the toxic effects of increased endogenous level of free ammonium. A raise in the concentration of N, especially in the form of NH3, greatly increased the content of free amino acids and soluble proteins. A possible utilisation of T. pohliana to evaluate the changes of atmospheric gaseous ammonia is proposed.
Resumo:
O uso de fertilizantes, além dos riscos de contaminação ambiental, onera o agricultor, chegando a representar 40% dos custos de produção na cultura do milho. O presente estudo visa identificar características fisiológicas relacionadas com o aumento da eficiência do uso do nitrogênio e assim subsidiar programas de melhoramento genético direcionados para obtenção de genótipos de milho produtivos em solos com baixa disponibilidade de nitrogênio. Foram estudadas as variedades de milho Pedra Dourada, Catetão, Carioca (variedades locais, não melhoradas), BR 106, BR 105 (variedades melhoradas em solos férteis), Nitroflint e Nitrodente (variedades melhoradas em solos pobres em N). Plântulas de milho receberam solução nutritiva de Hoagland modificada quanto às fontes de N, sendo utilizadas duas doses de N (1 mM e 15 mM), 75% na forma nítrica e 25% na forma amoniacal. O experimento, composto por um fatorial 2 × 7 (duas doses de N e sete variedades) foi conduzido em casa de vegetação em blocos completos casualizados com três repetições. A deficiência de N afetou de modo muito mais intenso o crescimento das partes aéreas em todos os genótipos. As características bioquímicas estudadas (atividades da nitrato redutase, glutamina sintetase e conteúdo de pigmentos fotossintéticos) foram sensíveis à disponibilidade de N mas não permitiram discriminar diferenças genotípicas. A massa seca das plantas deficientes em N apresentou elevada correlação positiva (0,86) com a massa seca acumulada nas raízes dos diferentes genótipos. Tais resultados sugerem a importância do estudo das características morfológicas e fisiológicas do sistema radicular na seleção de genótipos eficientes quanto ao uso do nitrogênio.
Resumo:
Mutant cell lines B3 and B10, which are unresponsive to both interferon (IFN)-alpha and IFN-gamma, and line B9, which does not respond to IFN-gamma stimulation, are described. The mutants were submitted to fluorescence-activated cell sorting (FACS) from a cellular pool, which was obtained from the parental cell line 2C4 after several rounds of mutagenesis. The unresponsiveness to IFN stimulation was observed both in terms of expression of cell surface markers (CD2, class I and II HLAs) and mRNA expression of IFN-stimulated genes (2'-5' oligoadenylate synthetase (OAS), 9-27, and guanylate binding protein (GBP)). Genetic crossing of B3, B9 and B10 with U3 (STAT1-), gamma2a (JAK2-) and U4 (JAK1-) mutants, respectively, did not restore IFN responsiveness to the hybrid cell lines. However, when these cell lines were crossed with the same mutants, but using the pairwise crosses B3 x U4, B9 x U3 and B10 x U3, the cell hybrids recovered full IFN responsiveness. The present genetic experiments permitted us to assign the mutant cell lines B3, B9 and B10 to the U3, gamma2 and U4 complementation groups, respectively. These conclusions were supported by the analysis of IFN-stimulated genes in the mutants.
Resumo:
We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.
Resumo:
We evaluated the porphyrinogenic ability of ethanol (20% in drinking water) per se, its effect on the development of sporadic porphyria cutanea tarda induced by hexachlorobenzene in female Wistar rats (170-190 g, N = 8/group), and the relationship with hepatic damage. Twenty-five percent of the animals receiving ethanol increased up to 14-, 25-, and 4.5-fold the urinary excretion of delta-aminolevulinate, porphobilinogen, and porphyrins, respectively. Ethanol exacerbated the precursor excretions elicited by hexachlorobenzene. Hepatic porphyrin levels increased by hexachlorobenzene treatment, while this parameter only increased (up to 90-fold) in some of the animals that received ethanol alone. Ethanol reduced the activities of uroporphyrinogen decarboxylase, delta-aminolevulinate dehydrase and ferrochelatase. In the ethanol group, many of the animals showed a 30% decrease in uroporphyrinogen activity; in the ethanol + hexachlorobenzene group, this decrease occurred before the one caused by hexachlorobenzene alone. Ethanol exacerbated the effects of hexachlorobenzene, among others, on the rate-limiting enzyme delta-aminolevulinate synthetase. The plasma activities of enzymes that are markers of hepatic damage were similar in all drug-treated groups. These results indicate that 1) ethanol exacerbates the biochemical manifestation of sporadic hexachlorobenzene-induced porphyria cutanea tarda; 2) ethanol per se affects several enzymatic and excretion parameters of the heme metabolic pathway; 3) since not all the animals were affected to the same extent, ethanol seems to be a porphyrinogenic agent only when there is a predisposition, and 4) hepatic damage showed no correlation with the development of porphyria cutanea tarda.