946 resultados para transmission-line matrix methods
Resumo:
Metamaterials have attracted great attention in recent decades, due to their electromagnetic properties which are not found in nature. Since metamaterials are now synthesized by the insertion of artificially manufactured inclusions in a specified homogeneous medium, it became possible for the researcher to work with a wide collection of independent parameters, for example, the electromagnetic properties of the material. An investigation of the properties of ring resonators was performed as well as those of metamaterials. A study of the major theories that clearly explain superconductivity was presented. The BCS theory, London Equations and the Two-Fluid Model are theories that support the application of superconducting microstrip antennas. Therefore, this thesis presents theoretical, numerical and experimental-computational analysis using full-wave formalism, through the application of the Transverse Transmission Line – LTT method applied in the Fourier Transform Domain (FTD). The LTT is a full wave method, which, as a rule, obtains the electromagnetic fields in terms of the transverse components of the structure. The inclusion of the superconducting patch is performed using the complex resistive boundary condition. Results of resonant frequency as a function of antenna parameters are obtained. To validate the analysis, computer programs were developed using Fortran, simulations were created using the commercial software, with curves being drawn using commercial software and MATLAB, in addition to comparing the conventional patch with the superconductor as well as comparing a metamaterial substrate with a conventional one, joining the substrate with the patch, observing what improves on both cas
Resumo:
In this dissertation, are presented two microstrip antennas and two arrays for applications in wireless communication systems multiband. Initially, we studied an antenna and a linear array consisting of two elements identical to the patch antenna isolated. The shape of the patch used in both structures is based on fractal geometry and has multiband behavior. Next a new antenna is analyzed and a new array such as initial structure, but with the truncated ground plane, in order to obtain better bandwidths and return loss. For feeding the structures, we used microstrip transmission line. In the design of planar structures, was used HFSS software for the simulation. Next were built and measures electromagnetic parameters such as input impedance and return loss, using vector network analyzer in the telecommunications laboratory of Federal University of Rio Grande do Norte. The experimental results were compared with the simulated and showed improved return loss for the first array and also appeared a fourth band and increased directivity compared with the isolated antenna. The first two benefits are not commonly found in the literature. For structures with a truncated ground planes, the technique improved impedance matching, bandwidth and return loss when compared to the initial structure with filled ground planes. Moreover, these structures exhibited a better distribution of frequency, facilitating the adjustment of frequencies. Thus, it is expected that the planar structures presented in this study, particularly arrays may be suitable for specific applications in wireless communication systems when frequency multiband and wideband transmission signals are required.
Resumo:
The microstrip antennas in your simplest form consist of a ground plane and a dielectric substrate which supports a conductive tape. As these antennas have some limitations, this work presents a study of anisotropic substrates, as well as some results in microstrip antennas with circular patch, aiming to overcome these limitations, especially in applications at 4G technology. These anisotropic substrates are those in which electrical permittivity and magnetic permeability are represented by tensors of second order. The study consists of a theoretical analysis of substrates and development of a mathematical formalism, the Transverse Transmission Line Method, aimed the application of these substrates in microstrip antennas. Among the substrates used in this study, there are the ferrimagnetic and metamaterials, in which some miniaturizations of the antennas are achieved. For antennas with circular patch, are considered arrays and modified ground planes in order to achieve improvement in parameters, in particular, gain and bandwidth. Several simulations have been made and antennas were constructed so that the measured values could be compared with the simulated values.
Resumo:
Context: The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems.
Aims: By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars.
Methods: We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample.
Results: The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini<200 kms-1) and a shoulder at intermediate velocities (200 <νesini<300 kms-1). The distributions of binaries and single stars, however, differ in two ways. First, the main peak at νesini ~ 100kms-1 is broader and slightly shifted towards higher spin rates in the binary distribution than that of the presumed-single stars. This shift is mostly due to short-period binaries (Porb~<10 d). Second, the νesini distribution of primaries lacks a significant population of stars spinning faster than 300 kms-1, while such a population is clearly present in the single-star sample. The νesini distribution of binaries with amplitudes of radial velocity variation in the range of 20 to 200 kms-1 (mostly binaries with Porb ~ 10-1000 d and/or with q<0.5) is similar to that of single O stars below νesini~<170kms-1.
Conclusions: Our results are compatible with the assumption that binary components formed with the same spin distribution as single stars, and that this distribution contains few or no fast-spinning stars. The higher average spin rate of stars in short-period binaries may either be explained by spin-up through tides in such tight binary systems, or by spin-down of a fraction of the presumed-single stars and long-period binaries through magnetic braking (or by a combination of both mechanisms). Most primaries and secondaries of SB2 systems with Porb~<10 d appear to have similar rotational velocities. This is in agreement with tidal locking in close binaries where the components have similar radii. The lack of very rapidly spinning stars among binary systems supports the idea that most stars with νesini~> 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.
Resumo:
With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure.
Resumo:
Ground plane slot structures have been shown to reduce coupling between cosited antennas. Although some such structures have already been reported, no analytical model exists to describe their behavior and there are no design guidelines. In this work, the behavior of reported ground plane structures is used as a clue to obtain generalizable information about such structures' behavior. The structures' scalability and excitation behavior is investigated. Next a circuit model is derived that describes the interaction of microstrip patch antennas with a ground plane slot structure based on mutual admittances between the ground plane slots and the effective slots at the antennas' radiating edges. The circuit model leads to design guidelines for the ground plane slot structure and an approximate relationship between mutual admittances which must be satisfied in order to isolate the antennas. Finally, we present a novel ground plane slot structure that mitigates some of the disadvantages of earlier designs.
Resumo:
Resonant tunnelling diode (RTD) is known to be the fastest electronics device that can be fabricated in compact form and operate at room temperature with potential oscillation frequency up to 2.5 THz. The RTD device consists of a narrow band gap quantum well layer sandwiched between two thin wide band gap barriers layers. It exhibits negative differential resistance (NDR) region in its current-voltage (I-V) characteristics which is utilised in making oscillators. Up to date, the main challenge is producing high output power at high frequencies in particular. Although oscillation frequencies of ~ 2 THz have been already reported, the output power is in the range of micro-Watts. This thesis describes the systematic work on the design, fabrication, and characterisation of RTD-based oscillators in microwave/millimetre-wave monolithic integrated circuits (MMIC) form that can produce high output power and high oscillation frequency at the same time. Different MMIC RTD oscillator topologies were designed, fabricated, and characterised in this project which include: single RTD oscillator which employs one RTD device, double RTDs oscillator which employs two RTD devices connected in parallel, and coupled RTD oscillators which combine the powers of two oscillators over a single load, based on mutual coupling and which can employ up to four RTD devices. All oscillators employed relatively large size RTD devices for high power operation. The main challenge was to realise high oscillation frequency (~ 300 GHz) in MMIC form with the employed large sized RTD devices. To achieve this aim, proper designs of passive structures that can provide small values of resonating inductances were essential. These resonating inductance structures included shorted coplanar wave guide (CPW) and shorted microstrip transmission lines of low characteristics impedances Zo. Shorted transmission line of lower Zo has lower inductance per unit length. Thus, the geometrical dimensions would be relatively large and facilitate fabrication by low cost photolithography. A series of oscillators with oscillation frequencies in the J-band (220 – 325 GHz) range and output powers from 0.2 – 1.1 mW have been achieved in this project, and all were fabricated using photolithography. Theoretical estimation showed that higher oscillation frequencies (> 1 THz) can be achieved with the proposed MMIC RTD oscillators design in this project using photolithography with expected high power operation. Besides MMIC RTD oscillators, reported planar antennas for RTD-based oscillators were critically reviewed and the main challenges in designing high performance integrated antennas on large dielectric constant substrates are discussed in this thesis. A novel antenna was designed, simulated, fabricated, and characterised in this project. It was a bow-tie antenna with a tuning stub that has very wide bandwidth across the J-band. The antenna was diced and mounted on a reflector ground plane to alleviate the effect of the large dielectric constant substrate (InP) and radiates upwards to the air-side direction. The antenna was also investigated for integration with the all types of oscillators realised in this project. One port and two port antennas were designed, simulated, fabricated, and characterised and showed the suitability of integration with the single/double oscillator layout and the coupled oscillator layout, respectively.
Resumo:
Conventional Si complementary-metal-oxide-semiconductor (CMOS) scaling is fast approaching its limits. The extension of the logic device roadmap for future enhancements in transistor performance requires non-Si materials and new device architectures. III-V materials, due to their superior electron transport properties, are well poised to replace Si as the channel material beyond the 10nm technology node to mitigate the performance loss of Si transistors from further reductions in supply voltage to minimise power dissipation in logic circuits. However several key challenges, including a high quality dielectric/III-V gate stack, a low-resistance source/drain (S/D) technology, heterointegration onto a Si platform and a viable III-V p-metal-oxide-semiconductor field-effect-transistor (MOSFET), need to be addressed before III-Vs can be employed in CMOS. This Thesis specifically addressed the development and demonstration of planar III-V p-MOSFETs, to complement the n-MOSFET, thereby enabling an all III-V CMOS technology to be realised. This work explored the application of InGaAs and InGaSb material systems as the channel, in conjunction with Al2O3/metal gate stacks, for p-MOSFET development based on the buried-channel flatband device architecture. The body of work undertaken comprised material development, process module development and integration into a robust fabrication flow for the demonstration of p-channel devices. The parameter space in the design of the device layer structure, based around the III-V channel/barrier material options of Inx≥0.53Ga1-xAs/In0.52Al0.48As and Inx≥0.1Ga1-xSb/AlSb, was systematically examined to improve hole channel transport. A mobility of 433 cm2/Vs, the highest room temperature hole mobility of any InGaAs quantum-well channel reported to date, was obtained for the In0.85Ga0.15As (2.1% strain) structure. S/D ohmic contacts were developed based on thermally annealed Au/Zn/Au metallisation and validated using transmission line model test structures. The effects of metallisation thickness, diffusion barriers and de-oxidation conditions were examined. Contacts to InGaSb-channel structures were found to be sensitive to de-oxidation conditions. A fabrication process, based on a lithographically-aligned double ohmic patterning approach, was realised for deep submicron gate-to-source/drain gap (Lside) scaling to minimise the access resistance, thereby mitigating the effects of parasitic S/D series resistance on transistor performance. The developed process yielded gaps as small as 20nm. For high-k integration on GaSb, ex-situ ammonium sulphide ((NH4)2S) treatments, in the range 1%-22%, for 10min at 295K were systematically explored for improving the electrical properties of the Al2O3/GaSb interface. Electrical and physical characterisation indicated the 1% treatment to be most effective with interface trap densities in the range of 4 - 10×1012cm-2eV-1 in the lower half of the bandgap. An extended study, comprising additional immersion times at each sulphide concentration, was further undertaken to determine the surface roughness and the etching nature of the treatments on GaSb. A number of p-MOSFETs based on III-V-channels with the most promising hole transport and integration of the developed process modules were successfully demonstrated in this work. Although the non-inverted InGaAs-channel devices showed good current modulation and switch-off characteristics, several aspects of performance were non-ideal; depletion-mode operation, modest drive current (Id,sat=1.14mA/mm), double peaked transconductance (gm=1.06mS/mm), high subthreshold swing (SS=301mV/dec) and high on-resistance (Ron=845kΩ.μm). Despite demonstrating substantial improvement in the on-state metrics of Id,sat (11×), gm (5.5×) and Ron (5.6×), inverted devices did not switch-off. Scaling gate-to-source/drain gap (Lside) from 1μm down to 70nm improved Id,sat (72.4mA/mm) by a factor of 3.6 and gm (25.8mS/mm) by a factor of 4.1 in inverted InGaAs-channel devices. Well-controlled current modulation and good saturation behaviour was observed for InGaSb-channel devices. In the on-state In0.3Ga0.7Sb-channel (Id,sat=49.4mA/mm, gm=12.3mS/mm, Ron=31.7kΩ.μm) and In0.4Ga0.6Sb-channel (Id,sat=38mA/mm, gm=11.9mS/mm, Ron=73.5kΩ.μm) devices outperformed the InGaAs-channel devices. However the devices could not be switched off. These findings indicate that III-V p-MOSFETs based on InGaSb as opposed to InGaAs channels are more suited as the p-channel option for post-Si CMOS.
Resumo:
68 pg.
Resumo:
Long air gaps containing a floating conductor are common insulation types in power grids. During the transmission line live-line work, the process of lineman entering the transmission line air gap constitutes a live-line work combined air gap, which is a typical long air gap containing a floating conductor. This thesis investigates the discharge characteristics, the discharge mechanism and a discharge simulation model of long air gaps containing a floating conductor in order to address the engineering issues in live-line work. The innovative achievements of the thesis are as follows: (1) The effect of the gap distance, the floating electrode structure, the switching impulse wavefront time, the altitude, and the deviation of the floating conductor from the axis on the breakdown voltage was determined. (2) The physical process of the discharges in long air gaps containing a floating conductor was determined. The reason why the discharge characteristics of long air gaps containing a floating electrode with complex geometrics and sharp protrusions and long air gaps with a rod-shaped floating electrode are similar has been studied. The formation mechanism of the lowest breakdown voltage area of a long air gap containing a floating conductor is explained. (3) A simulation discharge model of long air gaps containing a floating conductor was established, which can describe the physical process and predict the breakdown voltage. The model can realize the accurate prediction of the breakdown voltage of typical long air gaps containing a floating conductor and live-line work combined air gaps in transmission lines. The findings of the study can provide theoretical reference and technical support for improving the safety of live-line work.
Resumo:
The aim of this thesis is to demonstrate that 3D-printing technologies can be considered significantly attractive in the production of microwave devices and in the antenna design, with the intention of making them lightweight, cheaper, and easily integrable for the production of wireless, battery-free, and wearable devices for vital signals monitoring. In this work, a new 3D-printable, low-cost resin material, the Flexible80A, is proposed as RF substrate in the implementation of a rectifying antenna (rectenna) operating at 2.45 GHz for wireless power transfer. A careful and accurate electromagnetic characterization of the abovementioned material, revealing it to be a very lossy substrate, has paved the way for the investigation of innovative transmission line and antenna layouts, as well as etching techniques, possible thanks to the design freedom enabled by 3D-printing technologies with the aim of improving the wave propagation performance within lossy materials. This analysis is crucial in the design process of a patch antenna, meant to be successively connected to the rectifier. In fact, many different patch antenna layouts are explored varying the antenna dimensions, the substrate etchings shape and position, the feeding line technology, and the operating frequency. Before dealing with the rectification stage of the rectenna design, the hot and long-discussed topic of the equivalent receiving antenna circuit representation is addressed, providing an overview of the interpretation of different authors about the issue, and the position that has been adopted in this thesis. Furthermore, two rectenna designs are proposed and simulated with the aim of minimizing the dielectric losses. Finally, a prototype of a rectenna with the antenna conjugate matched to the rectifier, operating at 2.45 GHz, has been fabricated with adhesive copper on a substrate sample of Flexible80A and measured, in order to validate the simulated results.
Resumo:
Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors.
Resumo:
Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors. © 2007 IEEE.
Resumo:
This article is devoted to the research of channel efficiency for IP-traffic transmission over Digital Power Line Carrier channels. The application of serial WAN connections and header compression as methods to increase channel efficiency is considered. According to the results of the research an effective solution for network traffic transmission in DPLC networks was proposed.
Laboratory diagnosis of Schistosomiasis in areas of low transmission: a review of a line of research
Resumo:
After 57 years of successful control of schistosomiasis in Venezuela, the prevalence and intensity of infection have declined. Approximately 80% of the individuals eliminate less than 100 eggs/g of stools, therefore morbidity is mild and the majority are asymptomatic. The sensitivity of Kato-Katz decreases to approximately 60%. Available serological methods for the detection of circulating antigens only reach a 70% of sensitivity. Tests based on the detection of antibodies by immunoenzymatic assays have been improved. The circumoval precipitine test has shown a high sensitivity (97%), specificity (100%), and correlation with oviposition, being considered the best confirmatory diagnostic test. Additionally to the classical immunoenzymatic assays, the development of the alkaline phosphatase immunoassay, allowed to reach a 100% specificity with an 89% sensitivity. Recently, we have developed a modified ELISA in which the soluble egg antigen is treated with sodium metaperiodate (SMP-ELISA) in order to eliminate the glycosilated epitopes responsible for the false positive reactions. The specificity and sensitivity reaches 97% and 99%, respectively. Synthetic peptides from the excretory-secretory enzymes, cathepsin B (Sm31) legumain (Sm32) and cathepsin D (Sm45), have been synthesized. The combination of two peptides derived from the Sm31 have been evaluated, reaching a sensitivity of 96% when analyzed independently and with a 100% specificity. Antibodies raised in rabbits against peptides derived from the Sm31 and Sm32 are currently evaluated in two different antigen-capture-based assays. The development of a simple, cheap and reliable test that correlates with parasite activity is a major goal.