911 resultados para transgenic tobacco
Resumo:
A sorbent showing specific affinity for nicotine was prepared by molecular imprinting technique, using nicotine as the template, methacrylic acid (MAA) as the functional monomer, ethyleneglycol dimethacrylate (EDMA) as the crosslinker and chloroform as the porogen. UV spectroscopic analysis in the molecular imprinting prepolymerization stage confirmed that nicotine could complex with the functional monomer by electrostatic interaction (ionic interaction and hydrogen bonding). The affinity and the binding properties of the imprinted polymer towards nicotine were investigated by equilibrium rebinding experiments. The results indicated the presence of nicotine-specific binding sites in the imprinted polymer, and that the imprinted polymer had a good capacity (90 mumol/g polymer) for nicotine. The elution conditions were optimized on the column packed with the imprinted polymer to elute nicotine quantitatively. The imprinted polymer was used as a solid-phase extraction (SPE) material for the removal of nicotine from tobacco smoke. The results obtained showed that the imprinted polymer was superior in terms of removing nicotine in tobacco smoke, compared with the commercial filter tip.
Resumo:
BACKGROUND: Previously, tachyplesin gene (tac) has been successfully transferred into Undaria pinnatifida gametophytes using the method of microprojectile bombardment transformation. The objectives of this study were to compare and evaluate the performance of bubble-column and airlift bioreactors to determine a preferred configuration of bioreactor for vegetative propagation of transgenic U. pinnatifida gametophytes, and to then investigate the influence of light on vegetative propagation of these gametophytes, including incident light intensity, photoperiod and light quality to resolve the problems of rapid vegetative propagation within the selected bioreactor. RESULTS: Experimental results showed that final dry cell density in the airlift bioreactor was 12.7% higher than that in the bubble-column bioreactor under the optimal aeration rate of 1.2 L air min(-1) L-1 culture. And a maximum final dry cell density of 2830 mg L-1 was obtained within the airlift bioreactor using blue light at 40 mu mol m(-2) s(-1) with a light/dark cycle of 14/10 (h). Polymerase chain reaction (PCR) analysis indicated that genes (bar and tac) were not lost during rapid vegetative propagation within the airlift bioreactor. CONCLUSION: The airlift bioreactor was shown to be much more suitable for rapid vegetative propagation of transgenic U. pinnatifida gametophytes than the bubble-column bioreactor in the laboratory. The use of blue light allows improvement of vegetative propagation of transgenic U. pinnatifida gametophytes. (C) 2009 Society of Chemical Industry
Resumo:
A human acidic fibroblast growth factor gene, hafgf, was successfully transferred into Laminaria japonica (kelp) gametophytes via microprojectile bombardment using the biolistic PDS-1000/He gene gun. Following phosphinothricin screening, PCR detection and Southern blot analysis, transgenic L. japonica gametophytes were cultivated in an illuminated bubble-column bioreactor to optimize growth conditions. A maximal final dry cell density of 1,695 mg l(-1) was obtained in a batch culture having an initial dry cell density of 129.75 mg l(-1). This was achieved using an aeration rate of 1.08 l air min(-1) l(-1) culture in a medium containing 1.5 mM inorganic nitrate and 0.15 mM phosphate. In addition, the relationship between different nitrogen sources and growth of transgenic gametophytes indicated that both urea and sodium nitrate were effective nitrogen sources for cell growth, while ammonium ions inhibited growth of these gametophytes.
Resumo:
Fluctuating light intensity had a more significant impact on growth of gametophytes of transgenic Laminaria japonica in a 2500 ml bubble-column bioreactor than constant light intensity. A fluctuating light intensity between 10 and 110 mu E m(-2) s(-1), with a photoperiod of 14 h:10 h light:dark, was the best regime for growth giving 1430 mg biomass l(-1).