962 resultados para toll like receptor 4 gene
Resumo:
Pulmonary macrophages (PM), which are CD11b/CD18(+) and CD23(+), may be involved in the onset of inflammatory events caused by Paracoccidioides brasiliensis in the lungs. In the present study, we measured the nitric oxide (NO) and interleukin in PM production after intratracheal (i.t.) inoculation of an enriched beta-glucan cell wall fraction from P. brasiliensis (Fraction F1). BALB/c and C57/BL6 (B6) mice were i.t. treated with Fraction F1, and their PM were restimulated in vitro with LPS and interferon-gamma up to 14 days after treatment. Macrophages BALB/c mice produced less NO than PM from B6 mice. The lower NO production was caused by higher production of TGF-beta by pulmonary macrophages of BALB/c and was abrogated by anti-TGF-beta MoAb in vitro and in vivo. Other interleukins such as IL-10, IL-4 and a combination of IL-1, TNF-alpha and IL-6 were not involved in NO production induced by Fraction F1. Expression of CD11b increases and expression of CD23 decreases on PM of BALB/c mice after in vivo treatment whereas PM of B6 mice do not show a variation of their phenotype. Moreover, the ability of pulmonary macrophages to induce lymphocyte proliferation was reduced in mixed cultures of CD11b(+) or CD23(+) macrophages but was restored when lymphocytes were cultivated in the presence of NO inhibitor (L-NMMA). Thus, the results presented herein indicate that in BALB/c but not in B6 mice TGF- is strongly induced by Fraction 1 in PM in vivo and suppresses NO production. Low NO production by PM is associated with a change in CD11b/CD23 expression and with a high lymphocyte proliferative response. Thus, CD11b(+)/CD23(+) PM modulate NO and TGF-beta production in the pulmonary microenvironment.
Resumo:
Fibroblast growth factor receptor (FGFR) signalling is important in the initiation and regulation of osteogenesis. Although mutations in FGFR1, 2 and 3 genes are known to cause skeletal deformities, the expression of FGFR4 in bony tissue remains unclear. We have investigated the expression pattern of FGFR4 in the neonatal mouse calvaria and compared it to the expression pattern in cultures of primary osteoblasts. Immunohistochemistry demonstrated that FGFR4 was highly expressed in rudimentary membranous bone and strictly localised to the cellular components (osteoblasts) between the periosteal and endosteal layers. Cells in close proximity to the newly formed osteoid (preosteoblasts) also expressed FGFR4 on both the endosteal and periosteal surfaces. Immunocytochemical analysis of primary osteoblast cultures taken from the same cranial region also revealed high levels of FGFR4 expression, suggesting a similar pattern of cellular expression in vivo and in vitro. RT-PCR and Western blotting for FGFR4 confirmed its presence in primary osteoblast cultures. These results suggest that FGFR4 may be an important regulator of osteogenesis with involvement in preosteoblast proliferation and differentiation as well as osteoblast functioning during intramembranous ossification. The consistent expression of FGFR4 in vivo and in vitro supports the use of primary osteoblast cultures for elucidating the role of FGFR4 during osteogenesis.
Resumo:
RESUMO: As células dendríticas (DCs) têm a capacidade única de induzir respostas imunitárias contra as células tumorais, fagocitando antigénios tumorais e apresentando-os às células T, provocando respostas imunitárias específicas que conduzem à eliminação de células de tumorais. Por induzirem memória imunológica de longa duração, as DCs são uma estratégia atrativa para o tratamento e/ou prevenção do cancro. No entanto, os resultados terapêuticos obtidos em ensaios clínicos com DCs são escassos e pouco eficientes. O nosso grupo demonstrou que ácidos siálicos que contêm glicanos desempenham um papel funcional importante em DCs geradas ex vivo. Com o objetivo de estabelecer um modelo in vitro para avaliar a resposta anti-tumoral específica realizou-se um tratamento enzimático a DCs derivadas de monócitos (moDCs) com sialidase, enzima que cliva ácidos siálicos na superfície celular. O perfil de maturação de moDCs foi caracterizado por citometria de fluxo e expressão de citocinas. Os resultados mostram que a sialidase pode regular positivamente a expressão de moléculas co-estimuladoras na superfície de moDCs estimuladas com agonistas de Toll like receptors (TLRs). Para percebermos se o tratamento com sialidase afeta a sinalização dos TLRs foram usadas células HEK transfectadas de forma estável com TLRs 2, 4 and 7/8. Os dados mostraram que a desialilação não afeta a sinalização através estes recetores. Para investigar o impacto funcional da sialidase na capacidade de moDCs em apresentar um antigénio e ativar células T, moDCs foram tratadas, ou não, com sialidase e cultivadas com clones de células T CD8+ específicas para os péptidos derivados do antigénio tumoral gp100. Os resultados mostram que DCs HLA*02:01+ desialiladas exibem maior cross-presentation do péptido gp100280-288 às células T CD8+ específicas. Além disso o tratamento com sialidase também aumenta a capacidade de DCs de induzir a proliferação de células T CD4+. Em conjunto, os resultados indicam que moDCs com menos ácidos siálicos na superfície, têm melhor potencial imuno-estimulador, com maior capacidade de induzir respostas imunes anti-tumorais.--------------------- ABSTRACT: Dendritic cells (DCs) have a unique capacity to induce immune responses against tumor cells. They can phagocyte tumor antigens, maturate and present them to T cells, triggering antigen-specific immune responses that may lead to the elimination of tumor cells. Since they induce long-lasting immunological memory, DCs become an attractive strategy as cellular targets for vaccines in the treatment and/or prevention of cancer. However, the therapeutic results obtained in clinical trials with DCs are scarce and only few patients effectively respond to the DC vaccines. Our group has shown that sialic acid containing glycans play an important functional role in ex vivo generated DC. Here we aimed to establish an in vitro model to assess specific antitumor responses. To achieve this, an enzymatic treatment of monocyte-derived DCs (moDCs) was performed using sialidase to cleave surface sialic acids. The maturation profile of the moDCs was characterized by flow cytometry and cytokine expression. The results show that sialidase treatment can upregulate co-stimulatory molecules on surface of moDCs stimulated with Toll like receptor (TLR) agonists. To understand whether sialidase treatment affected the TLR signaling, we have used HEK cells stably transfected with TLRs 2, 4 and 7/8. The data showed that desialylation of moDCs does not affect the signaling via these receptors. To investigate the functional impact of sialidase treatment in the capacity of moDCs to present antigen and to activate antigen specific T cells, sialidase treated and untreated moDCs were co-cultured with CD8+ T cell clones specific for peptides derived from the gp100 tumor antigen. Our results show that desialylated HLA02:01+ DCs are superior in cross-presentation of the peptide to gp100280–288 specific CD8+ T cells. In addition, sialidase treatment also increased the DC capacity to induce CD4+ T cells proliferation. Together, these data indicate that moDCs with altered cell surface sialic acids, through a sialidase treatment, have a better immunostimulatory potential which could improve anti-tumor immune responses.
Resumo:
Además de los factores de riesgos convencionales y mejor conocidos que predisponen a la aterosclerosis, entre ellos, la hiperlipemia, hipertensión y el hábito de fumar, recientemente se ha propuesto a las infecciones y la inflamación como factores de riesgo a tener en cuenta en el desarrollo de esta patología. Considerando que algunas infecciones bacterianas y / o virales pueden ejercer una acción pro-aterogénica, probablemente como consecuencia de inflamación sistémica o un efecto directo sobre la pared vascular, nos propusimos como objetivo principal, estudiar la influencia de la infección in vivo con Trypanosoma cruzi (parásito protozoario, agente etiológico de la Enfermedad de Chagas) más una dieta rica en lípidos sobre la expresión de los receptores de la inmunidad innata (Toll – like) en un modelo experimental desarrollado en ratones C57BL/6, propensos a la aterosclerosis. Por otra parte, nos interesa caracterizar los tipos celulares que infiltran el corazón y la aorta de los animales sometidos a tratamientos experimental (mediante estudios inmunohistoquímicos), el perfil de citoquinas inflamatorias séricas y moléculas de adhesión intercelular, así como también establecer una correlación con parámetros bioquímico – clínicos y endocrinológicos, en especial el perfil de lípidos, lipoproteínas y apolipoproteínas, marcadores de inflamación sistémica, peso corporal, glucemia, insulina e insulina resistencia
Resumo:
Ateroesclerosis es una enfermedad inflamatoria crónica de arterias de mediano y gran calibre, caracterizada por activación de células endoteliales, reclutamiento de monocitos en la pared de los vasos y diferenciación de macrófagos en células espumosas cargadas de colesterol. Además de los factores de riesgo convencionales y mejor conocidos que predisponen a la ateroesclerosis, como la hiperlipemia, hipertensión y el hábito de fumar, recientemente se ha propuesto a las infecciones y la inflamación como factores de riesgo a considerar en su desarrollo. Algunas infecciones bacterianas o virales pueden ejercer una acción pro-aterogénica, probablemente como consecuencia de inflamación sistémica o un efecto directo sobre la pared vascular. Sin embargo, el papel del Trypanosoma cruzi ha sido escasamente explorado. Como objetivo principal nos propusimos, estudiar la influencia de la infección in vivo con Trypanosoma. cruzi (parásito protozoario, agente etiológico de la Enfermedad de Chagas ) más una dieta rica en lípidos sobre la expresión de los receptores tipo Toll de la inmunidad innata en un modelo experimental en ratones C57BL/6 salvajes, propensos al desarrollo de ateroesclerosis. Especifícamente, nos interesa caracterizar que tipos celulares infiltran el corazón y aorta de los animales sometidos a tratamiento experimental, el perfil de citoquinas inflamatorias séricas, quimioquinas y moléculas de adhesión intercelular, así como también establecer una correlación con parámetros bioquímicos-clínicos y endocrinológicos, en especial el perfil de lípidos, lipoproteínas y apolipoproteínas, marcadores de inflamación sistémica, peso corporal, glucemia, insulina e insulino-resistencia.
Resumo:
Airway epithelial cells were shown to drive the differentiation of monocytes into dendritic cells (DCs) with a suppressive phenotype. In this study, we investigated the impact of virus-induced inflammatory mediator production on the development of DCs. Monocyte differentiation into functional DCs, as reflected by the expression of CD11c, CD123, BDCA-4, and DC-SIGN and the capacity to activate T cells, was similar for respiratory syncytial virus (RSV)-infected and mock-infected BEAS-2B and A549 cells. RSV-conditioned culture media resulted in a partially mature DC phenotype, but failed to up-regulate CD80, CD83, CD86, and CCR7, and failed to release proinflammatory mediators upon Toll-like receptor (TLR) triggering. Nevertheless, these DCs were able to maintain an antiviral response by the release of Type I IFN. Collectively, these data indicate that the airway epithelium maintains an important suppressive DC phenotype under the inflammatory conditions induced by infection with RSV.
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4(+) T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-kappaB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.
Resumo:
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant central nervous system white-matter disease with variable clinical presentations, including personality and behavioral changes, dementia, depression, parkinsonism, seizures and other phenotypes. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor 1 receptor (encoded by CSF1R) in 14 families with HDLS. In one kindred, we confirmed the de novo occurrence of the mutation. Follow-up sequencing identified an additional CSF1R mutation in an individual diagnosed with corticobasal syndrome. In vitro, CSF-1 stimulation resulted in rapid autophosphorylation of selected tyrosine residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from partial loss of CSF1R function. As CSF1R is a crucial mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.
Resumo:
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Resumo:
Gout is the most common form of inflammatory arthritis in the elderly. In the last two decades, both hyperuricemia and gout have increased markedly and similar trends in the epidemiology of the metabolic syndrome have been observed. Recent studies provide new insights into the transporters that handle uric acid in the kidney as well as possible links between these transporters, hyperuricemia, and hypertension. The treatment of established hyperuricemia has also seen new developments. Febuxostat and PEG-uricase are two novel treatments that have been evaluated and shown to be highly effective in the management of hyperuricemia, thus enlarging the therapeutic options available to lower uric acid levels. Monosodium urate (MSU) crystals are potent inducers of inflammation. Within the joint, they trigger a local inflammatory reaction, neutrophil recruitment, and the production of pro-inflammatory cytokines as well as other inflammatory mediators. Experimentally, the uptake of MSU crystals by monocytes involves interactions with components of the innate immune system, namely Toll-like receptor (TLR)-2, TLR-4, and CD14. Intracellularly, MSU crystals activate multiple processes that lead to the formation of the NALP-3 (NACHT, LRR, and pyrin domain-containing-3) inflammasome complex that in turn processes pro-interleukin (IL)-1 to yield mature IL-1 beta, which is then secreted. The inflammatory effects of MSU are IL-1-dependent and can be blocked by IL-1 inhibitors. These advances in the understanding of hyperuricemia and gout provide new therapeutic targets for the future.
Resumo:
RYR1 mutations are the most common cause of structural congenital myopathies and may exhibit both dominant and recessive inheritance. Histopathological findings are variable and include central cores, multi-minicores, type 1 predominance/ uniformity, fibre type disproportion, increased internal nucleation and fatty and connective tissue. Until recently, diagnostic RYR1 sequencing was limited to mutational hotspots due to the large size of the gene. Since the introduction of full RYR1 sequencing in 2007 we have detected pathogenic mutations in 77 families: 39 had dominant inheritance and 38 recessive inheritance. In some cases with presumably recessive inheritance, only one heterozygous mutation inherited from an asymptomatic parent was identified. Of 28 dominant mutations, 6 were novel; 37 of the 59 recessive mutations were also novel. Dominant mutations were more frequently in recognized hotspot regions, while recessive mutations were distributed throughout the coding sequence. Dominant mutations were predominantly missense, whereas recessive mutations included many nonsense and splice mutations expected to result in reduced RyR1 protein. There was wide clinical variability in patients with both dominant and recessive inheritance. As a group, those with dominant mutations were generally more mildly affected than those with recessive inheritance, who had earlier onset and were weaker with more functional limitations. Extraocular muscle involvement was almost exclusively observed in the recessive group. Bulbar involvement was also more prominent in this group, resulting in a larger number requiring gastrostomy insertion. In conclusion, genomic sequencing of the entire RYR1 leads to the detection of many novel mutations, but may miss large genetic rearrangements in some cases. Assigning pathogenicity to novel mutations is often difficult and interpretation of genetic results in the context of clinical, histological and, increasingly, muscle MRI findings is essential.
Resumo:
The induction of potent CD8+ T cell responses by vaccines to fight microbes or tumors remains a major challenge, as many candidates for human vaccines have proved to be poorly immunogenic. Deoxycytidyl-deoxyguanosin oligodeoxynucleotides (CpG ODNs) trigger Toll-like receptor 9, resulting in dendritic cell maturation that can enhance immunogenicity of peptide-based vaccines in mice. We tested whether a synthetic ODN, CpG 7909, could improve human tumor antigen-specific CD8+ T cell responses. Eight HLA-A2+ melanoma patients received 4 monthly vaccinations of low-dose CpG 7909 mixed with melanoma antigen A (Melan-A; identical to MART-1) analog peptide and incomplete Freund's adjuvant. All patients exhibited rapid and strong antigen-specific T cell responses: the frequency of Melan-A-specific T cells reached over 3% of circulating CD8+ T cells. This was one order of magnitude higher than the frequency seen in 8 control patients treated similarly but without CpG and 1-3 orders of magnitude higher than that seen in previous studies with synthetic vaccines. The enhanced T cell populations consisted primarily of effector memory cells, which in part secreted IFN- and expressed granzyme B and perforin ex vivo. In vitro, T cell clones recognized and killed melanoma cells in an antigen-specific manner. Thus, CpG 7909 is an efficient vaccine adjuvant that promotes strong antigen-specific CD8+ T cell responses in humans.
Resumo:
The alpha chain of the interleukin-2 receptor (IL-2R alpha) is a key regulator of lymphocyte proliferation. To analyze the mechanisms controlling its expression in normal cells, we used the 5'-flanking region (base pairs -2539/+93) of the mouse gene to drive chloramphenicol acetyltransferase expression in four transgenic mouse lines. Constitutive transgene activity was restricted to lymphoid organs. In mature T lymphocytes, transgene and endogenous IL-2R alpha gene expression was stimulated by concanavalin A and up-regulated by IL-2 with very similar kinetics. In thymic T cell precursors, IL-1 and IL-2 cooperatively induced transgene and IL-2R alpha gene expression. These results show that regulation of the endogenous IL-2R alpha gene occurs mainly at the transcriptional level. They demonstrate that cis-acting elements in the 5'-flanking region present in the transgene confer correct tissue specificity and inducible expression in mature T cells and their precursors in response to antigen, IL-1, and IL-2. In a complementary approach, we screened the 5' end of the endogenous IL-2R alpha gene for DNase-I hypersensitive sites. We found three lymphocyte specific DNase-I hypersensitive sites. Two, at -0.05 and -5.3 kilobase pairs, are present in resting T cells. A third site appears at -1.35 kilobase pairs in activated T cells. It co-localizes with IL-2-responsive elements identified by transient transfection experiments.
Resumo:
The genetics and pathogenesis of splenic marginal zone lymphoma are poorly understood. The lymphoma lacks chromosome translocation, and ~30% of cases are featured by 7q deletion, but the gene targeted by the deletion is unknown. A recent study showed inactivation of A20, a 'global' NF-kB negative regulator, in 1 of 12 splenic marginal zone lymphoma. To investigate further whether deregulation of the NF-kB pathway plays a role in the pathogenesis of splenic marginal zone lymphoma, we screened several NF-kB regulators for genetic changes by PCR and sequencing. Somatic mutations were found in A20 (6/46=13%), MYD88 (6/46=13%), CARD11 (3/34=8.8%), but not in CD79A, CD79B and ABIN1. Interestingly, these genetic changes are largely mutually exclusive from each other and MYD88 mutation was also mutually exclusive from 7q deletion. These results strongly suggest that deregulation of the TLR (toll like receptor) and BCR (B-cell receptor) signalling pathway may play an important role in the pathogenesis of splenic marginal zone lymphoma.