899 resultados para time-related underemployment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroimaging studies typically compare experimental conditions using average brain responses, thereby overlooking the stimulus-related information conveyed by distributed spatio-temporal patterns of single-trial responses. Here, we take advantage of this rich information at a single-trial level to decode stimulus-related signals in two event-related potential (ERP) studies. Our method models the statistical distribution of the voltage topographies with a Gaussian Mixture Model (GMM), which reduces the dataset to a number of representative voltage topographies. The degree of presence of these topographies across trials at specific latencies is then used to classify experimental conditions. We tested the algorithm using a cross-validation procedure in two independent EEG datasets. In the first ERP study, we classified left- versus right-hemifield checkerboard stimuli for upper and lower visual hemifields. In a second ERP study, when functional differences cannot be assumed, we classified initial versus repeated presentations of visual objects. With minimal a priori information, the GMM model provides neurophysiologically interpretable features - vis à vis voltage topographies - as well as dynamic information about brain function. This method can in principle be applied to any ERP dataset testing the functional relevance of specific time periods for stimulus processing, the predictability of subject's behavior and cognitive states, and the discrimination between healthy and clinical populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study different temporal components on cancer mortality (age, period and cohort) methods of graphic representation were applied to Swiss mortality data from 1950 to 1984. Maps using continuous slopes ("contour maps") and based on eight tones of grey according to the absolute distribution of rates were used to represent the surfaces defined by the matrix of various age-specific rates. Further, progressively more complex regression surface equations were defined, on the basis of two independent variables (age/cohort) and a dependent one (each age-specific mortality rate). General patterns of trends in cancer mortality were thus identified, permitting definition of important cohort (e.g., upwards for lung and other tobacco-related neoplasms, or downwards for stomach) or period (e.g., downwards for intestines or thyroid cancers) effects, besides the major underlying age component. For most cancer sites, even the lower order (1st to 3rd) models utilised provided excellent fitting, allowing immediate identification of the residuals (e.g., high or low mortality points) as well as estimates of first-order interactions between the three factors, although the parameters of the main effects remained still undetermined. Thus, the method should be essentially used as summary guide to illustrate and understand the general patterns of age, period and cohort effects in (cancer) mortality, although they cannot conceptually solve the inherent problem of identifiability of the three components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a processing methodology that allows crosshole ERT (electrical resistivity tomography) monitoring data to be used to derive temporal fluctuations of groundwater electrical resistivity and thereby characterize the dynamics of groundwater in a gravel aquifer as it is infiltrated by river water. Temporal variations of the raw ERT apparent-resistivity data were mainly sensitive to the resistivity (salinity), temperature and height of the groundwater, with the relative contributions of these effects depending on the time and the electrode configuration. To resolve the changes in groundwater resistivity, we first expressed fluctuations of temperature-detrended apparent-resistivity data as linear superpositions of (i) time series of riverwater-resistivity variations convolved with suitable filter functions and (ii) linear and quadratic representations of river-water-height variations multiplied by appropriate sensitivity factors; river-water height was determined to be a reliable proxy for groundwater height. Individual filter functions and sensitivity factors were obtained for each electrode configuration via deconvolution using a one month calibration period and then the predicted contributions related to changes in water height were removed prior to inversion of the temperature-detrended apparent-resistivity data. Applications of the filter functions and sensitivity factors accurately predicted the apparent-resistivity variations (the correlation coefficient was 0.98). Furthermore, the filtered ERT monitoring data and resultant time-lapse resistivity models correlated closely with independently measured groundwater electrical resistivity monitoring data and only weakly with the groundwater-height fluctuations. The inversion results based on the filtered ERT data also showed significantly less inversion artefacts than the raw data inversions. We observed resistivity increases of up to 10% and the arrival time peaks in the time-lapse resistivity models matched those in the groundwater resistivity monitoring data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research seeks to fill some of the gaps in understanding the local, regional, and statewide economic consequences of the disasters of 2008. This report evaluates sets of population, unemployment, employment, business firms, and trade patterns over time in an attempt to discern the household consumption and business productivity disruptions caused by the weather disasters of 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-lapse geophysical measurements are widely used to monitor the movement of water and solutes through the subsurface. Yet commonly used deterministic least squares inversions typically suffer from relatively poor mass recovery, spread overestimation, and limited ability to appropriately estimate nonlinear model uncertainty. We describe herein a novel inversion methodology designed to reconstruct the three-dimensional distribution of a tracer anomaly from geophysical data and provide consistent uncertainty estimates using Markov chain Monte Carlo simulation. Posterior sampling is made tractable by using a lower-dimensional model space related both to the Legendre moments of the plume and to predefined morphological constraints. Benchmark results using cross-hole ground-penetrating radar travel times measurements during two synthetic water tracer application experiments involving increasingly complex plume geometries show that the proposed method not only conserves mass but also provides better estimates of plume morphology and posterior model uncertainty than deterministic inversion results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To describe changes in leisure time and occupational physical activity status in an urban Mediterranean population-based cohort, and to evaluate sociodemographic, health-related and lifestyle correlates of such changes. Methods: Data for this study come from the Cornellè Health Interview Survey Follow-Up Study, a prospective cohort study of a representative sample (n¿=¿2500) of the population. Participants in the analysis reported here include 1246 subjects (567 men and 679 women) who had complete data on physical activity at the 1994 baseline survey and at the 2002 follow-up. We fitted Breslow-Cox regression models to assess the association between correlates of interest and changes in physical activity. Results: Regarding leisure time physical activity, 61.6% of cohort members with ¿sedentary¿ habits in 1994 changed their status to ¿light/moderate¿ physical activity in 2002, and 70% who had ¿light/moderate¿ habits in 1994 did not change their activity level. Regarding occupational physical activity, 74.4% of cohort members who were ¿active¿ did not change their level of activity, and 64.3% of participants with ¿sedentary¿ habits in 1994 changed to ¿active¿ occupational physical activity. No clear correlates of change in physical activity were identified in multivariate analyses. Conclusion: While changes in physical activity are evident in this population-based cohort, no clear determinants of such changes were recognised. Further longitudinal studies including other potential individual and contextual determinants are needed to better understand determinants of changes in physical activity at the population level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil and fertilizer management during cultivation can affect crop productivity and profitability. Long-term experiments are therefore necessary to determine the dynamics of nutrient and root distribution as related to soil profile, as well as the effects on nutrient uptake and crop growth. An 18-year experiment was conducted at the Federal University of Rio Grande do Sul State (UFRGS), in Eldorado do Sul, Brazil, on Rhodic Paleudult soil. Black oat and vetch were planted in the winter and corn in the summer. The soil management methods were conventional, involving no-tillage and strip tillage techniques and broadcast, row-and strip-applied fertilizer placement (triple superphosphate). Available P (Mehlich-1) and root distribution were determined in soil monoliths during the corn grain filling period. Corn shoot dry matter production and P accumulation during the 2006/2007 growing season were determined and the efficiency of P utilization calculated. Regardless of the degree of soil mobilization, P and roots were accumulated in the fertilized zone with time, mainly in the surface layer (0-10 cm). Root distribution followed P distribution for all tillage systems and fertilizer treatments. Under no-tillage, independent of the fertilizer placement, the corn plants developed more roots than in the other tillage systems. Although soil tillage systems and fertilizer treatments affected P and root distribution throughout the soil profile, as well as P absorption and corn growth, the efficiency of P utilization was not affected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Of all nutrients, N has the strongest effect on grass growth and an adequate N fertilization can reduce the time required for the formation of high-quality mats. This study aimed to evaluate the influence of N fertilization on Bermuda grass sod production and quality. The experiment was conducted in an area of commercial sod production, in Capela do Alto, state of São Paulo. Cynodon dactylon (Pers) L., known as Bermuda grass, was evaluated in a randomized complete block design with five treatments and four replications. Treatments consisted of five N rates: 0, 150, 300, 450 and 600 kg ha-1. Increasing N applications to Bermuda grass increased the soil cover rate, reducing the time required for mat formation. The accumulation of rhizome + root + stolon dry matter was highest at a rate of 354 kg ha-1 N and the mat resistance to breakage at a rate of 365 kg ha-1 N. Nitrogen rates between 354 and 365 kg ha-1 increased mat resistance and consequently the suitability for postharvest handling, tending to improve the efficiency in the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The estimation of non available soil variables through the knowledge of other related measured variables can be achieved through pedotransfer functions (PTF) mainly saving time and reducing cost. Great differences among soils, however, can yield non desirable results when applying this method. This study discusses the application of developed PTFs by several authors using a variety of soils of different characteristics, to evaluate soil water contents of two Brazilian lowland soils. Comparisons are made between PTF evaluated data and field measured data, using statistical and geostatistical tools, like mean error, root mean square error, semivariogram, cross-validation, and regression coefficient. The eight tested PTFs to evaluate gravimetric soil water contents (Ug) at the tensions of 33 kPa and 1,500 kPa presented a tendency to overestimate Ug 33 kPa and underestimate Ug1,500 kPa. The PTFs were ranked according to their performance and also with respect to their potential in describing the structure of the spatial variability of the set of measured values. Although none of the PTFs have changed the distribution pattern of the data, all resulted in mean and variance statistically different from those observed for all measured values. The PTFs that presented the best predictive values of Ug33 kPa and Ug1,500 kPa were not the same that had the best performance to reproduce the structure of spatial variability of these variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three most frequent forms of mild cognitive impairment (MCI) are single-domain amnestic MCI (sd-aMCI), single-domain dysexecutive MCI (sd-dMCI) and multiple-domain amnestic MCI (md-aMCI). Brain imaging differences among single domain subgroups of MCI were recently reported supporting the idea that electroencephalography (EEG) functional hallmarks can be used to differentiate these subgroups. We performed event-related potential (ERP) measures and independent component analysis in 18 sd-aMCI, 13 sd-dMCI and 35 md-aMCI cases during the successful performance of the Attentional Network Test. Sensitivity and specificity analyses of ERP for the discrimination of MCI subgroups were also made. In center-cue and spatial-cue warning stimuli, contingent negative variation (CNV) was elicited in all MCI subgroups. Two independent components (ICA1 and 2) were superimposed in the time range on the CNV. The ICA2 was strongly reduced in sd-dMCI compared to sd-aMCI and md-aMCI (4.3 vs. 7.5% and 10.9% of the CNV component). The parietal P300 ERP latency increased significantly in sd-dMCI compared to md-aMCI and sd-aMCI for both congruent and incongruent conditions. This latency for incongruent targets allowed for a highly accurate separation of sd-dMCI from both sd-aMCI and md-aMCI with correct classification rates of 90 and 81%, respectively. This EEG parameter alone performed much better than neuropsychological testing in distinguishing sd-dMCI from md-aMCI. Our data reveal qualitative changes in the composition of the neural generators of CNV in sd-dMCI. In addition, they document an increased latency of the executive P300 component that may represent a highly accurate hallmark for the discrimination of this MCI subgroup in routine clinical settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local-spin-density-functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (v) related. We have found that the spin dipole mode is especially soft for even-n values. Results for selected numbers of electrons and confining potentials are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Human experience takes place in the line of mental-time (MT) created through imagination of oneself in different time-points in past or future (self-projection in time). Here we manipulated self-projection in MT not only with respect to one's life-events but also with respect to one's faces from different past and future time-points. Methods: We here compared MTT with respect to one's facial images from different time points in past and future (study 1: MT-faces) as well as with respect to different past and future life events (study 2: MT-events). Participants were asked to make judgments about past and future face images and past and future events from three different time-points: the present (Now), eight years earlier (Past) or eight years later (Future). In addition, as a control task participants were asked to make recognition judgments with respect to faces and memory-related judgments with respect to events without changing their habitual self-location in time. Behavioral measures and functional magnetic resonance imaging (fMRI) activity after subtraction of recognition and memory related activities show both absolute MT and relative MT effects for faces and events, signifying a fundamental brain mechanism of MT, disentangled from episodic memory functions. Results: Behavioural and event-related fMRI activity showed three independent effects characterized by (1) similarity between past recollection and future imagination, (2) facilitation of judgments related to the future as compared to the past, and (3) facilitation of judgments related to time-points distant from the present. These effects were found with respect to faces and events suggesting that the brain mechanisms of MT are independent of whether actual life episodes have to be re-/pre-experienced and recruited a common cerebral network including the medial-temporal, precuneus, inferior-frontal, temporo-parietal, and insular cortices. Conclusions: These behavioural and neural data suggest that self-projection in time is a crucial aspect of MT, relying on neural structures encoding memory, mental imagery, and self. Furthermore our results emphasize the idea that mental temporal processing is more strongly directed to future prediction than to past recollection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correct use of closed field chambers to determine N2O emissions requires defining the time of day that best represents the daily mean N2O flux. A short-term field experiment was carried out on a Mollisol soil, on which annual crops were grown under no-till management in the Pampa Ondulada of Argentina. The N2O emission rates were measured every 3 h for three consecutive days. Fluxes ranged from 62.58 to 145.99 ∝g N-N2O m-2 h-1 (average of five field chambers) and were negatively related (R² = 0.34, p < 0.01) to topsoil temperature (14 - 20 ºC). N2O emission rates measured between 9:00 and 12:00 am presented a high relationship to daily mean N2O flux (R² = 0.87, p < 0.01), showing that, in the study region, sampling in the mornings is preferable for GHG.