828 resultados para timber
Resumo:
The publication provides a snapshot of the forest and timber industry’s contribution to the Queensland economy and highlights the scope, innovation and features of the state’s forest and timber products that are produced from Queensland’s unique resources.
Resumo:
The publisher regrets to inform the readers that the image that is appearing for Fig. 8 is incorrect and that the Supplementary material is missing on the published paper. The correct image for Fig. 8 and the Supplementary files are provided below: Fig. 8. (a) Timber blocks covered by invented plastic container bottom open, (b) timber blocks in the field after trial, (c) and (d) comparison between resin-coated blocks without termite damage and control blocks which were severely damaged by termites.
Resumo:
Measuring the extent to which a piece of structural timber has distorted at a macroscopic scale is fundamental to assessing its viability as a structural component. From the sawmill to the construction site, as structural timber dries, distortion can render it unsuitable for its intended purposes. This rejection of unusable timber is a considerable source of waste to the timber industry and the wider construction sector. As such, ensuring accurate measurement of distortion is a key step in addressing ineffciencies within timber processing. Currently, the FRITS frame method is the established approach used to gain an understanding of timber surface profile. The method, while reliable, is dependent upon relatively few measurements taken across a limited area of the overall surface, with a great deal of interpolation required. Further, the process is unavoidably slow and cumbersome, the immobile scanning equipment limiting where and when measurements can be taken and constricting the process as a whole. This thesis seeks to introduce LiDAR scanning as a new, alternative approach to distortion feature measurement. In its infancy as a measurement technique within timber research, the practicalities of using LiDAR scanning as a measurement method are herein demonstrated, exploiting many of the advantages the technology has over current approaches. LiDAR scanning creates a much more comprehensive image of a timber surface, generating input data multiple magnitudes larger than that of the FRITS frame. Set-up and scanning time for LiDAR is also much quicker and more flexible than existing methods. With LiDAR scanning the measurement process is freed from many of the constraints of the FRITS frame and can be done in almost any environment. For this thesis, surface scans were carried out on seven Sitka spruce samples of dimensions 48.5x102x3000mm using both the FRITS frame and LiDAR scanner. The samples used presented marked levels of distortion and were relatively free from knots. A computational measurement model was created to extract feature measurements from the raw LiDAR data, enabling an assessment of each piece of timber to be carried out in accordance with existing standards. Assessment of distortion features focused primarily on the measurement of twist due to its strong prevalence in spruce and the considerable concern it generates within the construction industry. Additional measurements of surface inclination and bow were also made with each method to further establish LiDAR's credentials as a viable alternative. Overall, feature measurements as generated by the new LiDAR method compared well with those of the established FRITS method. From these investigations recommendations were made to address inadequacies within existing measurement standards, namely their reliance on generalised and interpretative descriptions of distortion. The potential for further uses of LiDAR scanning within timber researches was also discussed.
Resumo:
Power distribution systems are susceptible to extreme damage from natural hazards especially hurricanes. Hurricane winds can knock down distribution poles thereby causing damage to the system and power outages which can result in millions of dollars in lost revenue and restoration costs. Timber has been the dominant material used to support overhead lines in distribution systems. Recently however, utility companies have been searching for a cost-effective alternative to timber poles due to environmental concerns, durability, high cost of maintenance and need for improved aesthetics. Steel has emerged as a viable alternative to timber due to its advantages such as relatively lower maintenance cost, light weight, consistent performance, and invulnerability to wood-pecker attacks. Both timber and steel poles are prone to deterioration over time due to decay in the timber and corrosion of the steel. This research proposes a framework for conducting fragility analysis of timber and steel poles subjected to hurricane winds considering deterioration of the poles over time. Monte Carlo simulation was used to develop the fragility curves considering uncertainties in strength, geometry and wind loads. A framework for life-cycle cost analysis is also proposed to compare the steel and timber poles. The results show that steel poles can have superior reliability and lower life-cycle cost compared to timber poles, which makes them suitable substitutes.
Resumo:
Despite the large quantity of sugarcane grown in Australia, no bagasse is pulped in the country. This is largely because of an established pulp industry based on the abundant native hardwood resources. However, increasing demand for fibre and the limited availability of additional forest areas make bagasse pulping attractive. Issues relating to infrastructure and economics are discussed, and scenarios of acceptable risk identified. It is shown that there should be scope for the production of bleached bagasse pulp in Australia.
Resumo:
SRI has examined the organosolv (organic solvation) pulping of Australian bagasse using technology supplied by Ecopulp. In the process, bagasse is reacted with aqueous ethanol in a digester at elevated temperatures (between 150ºC and 200ºC). The products from the digester are separated using proprietary technology before further processing into a range of saleable products. Test trials were undertaken using two batch digesters; the first capable of pulping about 25 g of wet depithed bagasse and the second, larger samples of about 1.5 kg of wet depithed bagasse. From this study, the unbleached pulp produced from fresh bagasse did not have very good strength properties for the production of corrugated medium for cartons and bleached pulp. In particular, the lignin contents as indicated by the Kappa number for the unbleached pulps are high for making bleached pulp. However, in spite of the high lignin content, it is possible to bleach the pulp to acceptable levels of brightness up to 86.6% ISO. The economics were assessed for three tier pricing (namely low, medium and high price). The economic return for a plant that produces 100 air dry t/d of brownstock pulp is satisfactory for both high and medium pricing levels of pricing. The outcomes from the project justify that work should continue through to either pilot plant or upgraded laboratory facility.
Resumo:
The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.
Resumo:
Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.
Resumo:
This paper discusses challenges to developers of a national Life Cycle Inventory (LCI) database on which to base assessment of building environmental impacts and a key to development of a fully integrated eco-design tool created for automated eco-efficiency assessment of commercial building design direct from 3D CAD. The scope of this database includes Australian and overseas processing burdens involved in acquiring, processing, transporting, fabricating, finishing and using metals, masonry, timber, glazing, ceramics, plastics, fittings, composites and coatings. Burdens are classified, calculated and reported for all flows of raw materials, fuels, energy and emissions to and from the air, soil and water associated with typical products and services in building construction, fitout and operation. The aggregated life cycle inventory data provides the capacity to generate environmental impact assessment reports based on accepted performance indicators. Practitioners can identify hot spots showing high environmental burdens of a proposed design and drill down to report on specific building components. They can compare assessments with case studies and operational estimates to assist in eco-efficient design of a building, fitout and operation.
Resumo:
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.
Resumo:
The author's approach to the problems associated with building in bushfire prone landscapes comes from 12 years of study of the biophysical and cultural landscapes in the Great Southern Region of Western Australia - research which resulted in the design and construction of the H-house at Bremer Bay. The house was developed using a 'ground up' approach whereby Dr Weir conducted topographical surveys and worked with a local botanist and a bushfire risk consultant to ascertain the level of threat that fire presented to this particular site. The intention from the outset however, was not to design a bushfire resistant house per se, but to develop a design which would place the owners in close proximity to the highly biodiverse heath vegetation of their site. The research aim was to find ways - through architectural design-to link the patterns of usage of the house with other site specific conditions related to the prevailing winds, solar orientation and seasonal change. The H-house has a number of features which increase the level of bushfire safety. These include: Fire rated roller shutters (tested by the CSIRO for ember attack and radiant heat), Fire resistant double glazing (on windows not protected by the shutters), Fibre-cement sheet cladding of the underside of the elevated timber floor structure, Manually operated high pressure sprinkler system on exposed timber decks, A fire refuge (an enlarged laundry, shower area) within the house with a dedicated cabinet for fire fighting equipment) and A low pressure solar powered domestic water supply system.
Resumo:
This article discusses the renovation of a house located in western Brisbane, Queensland, originally designed by architects Lindsay and Kerry Clare and now renovated by architect Stuart Vokes of Owen and Vokes. Features of the renovation include keeping the Queenslander style while updating with new timber finishing, white painted surfaces, opening up living areas and designing a new kitchen.
Resumo:
This article discusses the design of a memorial space of the Tree of Knowledge, located in Oak Street, Barcaldine, Queensland designed by Brian Hooper Architect and M3 Architecture. Features of the design include the dead tree trunk underneath pieces of timber hanging down to show the original size of the tree in the 1890s and the root ball visible under a glass floor.
Resumo:
The stimulus for this project rose from the need to find an alternative solution to aging superstructures of road-bridge in low volume roads (LVR). The solution investigated, designed and consequently plans to construct, involved replacing an aging super-structure of a 10m span bridge with Flat-Bed Rail Wagon (FBRW). The main focus of this paper is to present alternate structural system for the design of the FBRW as road bridge deck conforming to AS5100. The structural adequacy of the primary members of the FBRW was first validated using full scale experimental investigation to AS5100 serviceability and ultimate limit state loading. The bare FBRW was further developed to include a running surface. Two options were evaluated during the design phase, namely timber and reinforced concrete. First option, which is presented here, involved strengthening of the FBRW using numerous steel sections and overlaying the bridge deck with timber planks. The idea of this approach was to use all the primary and secondary members of the FBRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option, which was the preferred option for construction, involved use of primary members only with an overlaying reinforced concrete slab deck. This option minimised the risk associated with any uncertainty of secondary members to its structural adequacy. The paper will report selected results of the experiment as well as the design phases of option one with conclusions highlighting the viability of option 1 and its limitations.