438 resultados para theorems
Resumo:
In the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications.
Resumo:
In this work, we study and compare two percolation algorithms, one of then elaborated by Elias, and the other one by Newman and Ziff, using theorical tools of algorithms complexity and another algorithm that makes an experimental comparation. This work is divided in three chapters. The first one approaches some necessary definitions and theorems to a more formal mathematical study of percolation. The second presents technics that were used for the estimative calculation of the algorithms complexity, are they: worse case, better case e average case. We use the technique of the worse case to estimate the complexity of both algorithms and thus we can compare them. The last chapter shows several characteristics of each one of the algorithms and through the theoretical estimate of the complexity and the comparison between the execution time of the most important part of each one, we can compare these important algorithms that simulate the percolation.
Resumo:
This work presents a proposal for introducing the teaching of Geometry Space study attempts to demonstrate that the use of manipulatives as a teaching resource can be an alternative learning facilitator for fixing the primitive concepts of geometry, the postulates and theorems, position relationships between points, lines and planes and calculating distances. The development makes use of a sequence of activities aimed at ensuring that students can build a more systematic learning and these are divided into four steps
Resumo:
Among several theorems which are taught in basic education some of them can be proved in the classroom and others do not, because the degree of difficulty of its formal proof. A classic example is the Fundamental Theorem of Algebra which is not proved, it is necessary higher-level knowledge in mathematics. In this paper, we justify the validity of this theorem intuitively using the software Geogebra. And, based on [2] we will present a clear formal proof of this theorem that is addressed to school teachers and undergraduate students in mathematics
Resumo:
The covariant quark model of the pion based on the effective nonlocal quark-hadron Lagrangian involving nonlocality induced by instanton fluctuations of the QCD vacuum is reviewed. Explicit gauge invariant formalism allows us to construct the conserved vector and axial currents and to demonstrate their consistency with the Ward-Takahashi identities and low-energy theorems. The spontaneous breaking of chiral symmetry results in the dynamic quark mass and the vertex of the quark-pion interaction, both momentum-dependent. The parameters of the instanton vacuum, the average size of the instantons, and the effective quark mass are expressed in terms of the vacuum expectation values of the lowest dimension quark-gluon operators and low-energy pion observables. The transition pion form factor for the processes gamma*gamma --> pi (0) and gamma*gamma* --> pi (0) is analyzed in detail. The kinematic dependence of the transition form factor at high momentum transfers allows one to determine the relationship between the light-cone amplitude of the quark distribution in the pion and the quark-pion vertex function. Its dynamic dependence implies that the transition form factor gamma*gamma --> pi (0) at high momentum transfers is acutely sensitive to the size of the nonlocality of nonperturbative fluctuations in the QCD vacuum. In the leading twist, the distribution amplitude and the distribution function of the valence quarks in the pion are calculated at a low normalization point of the order of the inverse average instanton size rho (-1)(c). The QCD results are evolved to higher momentum transfers and are in reasonable agreement with available experimental data on the pion structure.
Resumo:
Nonperturbative Wilson coefficients of the operator product expansion (OPE) for the spin-0 glueball correlators are derived and analyzed. A systematic treatment of the direct instanton contributions is given, based on a realistic instanton size distribution and renormalization at the operator scale. In the pseudoscalar channel, topological charge screening is identified as an additional source of (semi-) hard nonperturbative physics. The screening contributions are shown to be vital for consistency with the anomalous axial Ward identity, and previously encountered pathologies (positivity violations and the disappearance of the 0(-+) glueball signal) are traced to their neglect. on the basis of the extended OPE, a comprehensive quantitative analysis of eight Borel-moment sum rules in both spin-0 glueball channels is then performed. The nonperturbative OPE coefficients turn out to be indispensable for consistent sum rules and for their reconciliation with the underlying low-energy theorems. The topological short-distance physics strongly affects the sum rule results and reveals a rather diverse pattern of glueball properties. New predictions for the spin-0 glueball masses and decay constants and an estimate of the scalar glueball width are given, and several implications for glueball structure and experimental glueball searches are discussed.
Resumo:
Vertex corrections are taken into account in the Schwinger-Dyson equation for the nucleon propagator in a relativistic field theory of fermions and mesons. The usual Hartree-Fock approximation for the nucleon propagator is known to produce the appearance of complex (ghost) poles which violate basic theorems of quantum field theory. In a theory with vector mesons there are vertex corrections that produce a strongly damped vertex function in the ultraviolet. One set of such corrections is known as the Sudakov form factor in quantum electrodynamics. When the Sudakov form factor generated by massive neutral vector mesons is included in the Hartree-Fock approximation to the Schwinger-Dyson equation for the nucleon propagator, the ghost poles disappear and consistency with basic requirements of quantum field theory is recovered.
Resumo:
The results in this paper are motivated by two analogies. First, m-harmonic functions in R(n) are extensions of the univariate algebraic polynomials of odd degree 2m-1. Second, Gauss' and Pizzetti's mean value formulae are natural multivariate analogues of the rectangular and Taylor's quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules could be generalized to results about integration of polyharmonic functions. This is done for the Tchakaloff-Obrechkoff quadrature formula and for the Gaussian quadrature with two nodes.
Resumo:
The electron-diffraction pattern for two slits with magnetic flux confined to an inaccessible region between them is calculated. The Aharonov-Bohm effect gives a diffraction pattern that is asymmetric but has a symmetric envelope. In general, both the expected displacement and the kinetic momentum of the electron are nonzero as a consequence of the asymmetry. Nevertheless, Ehrenfests theorems and the conservation of momentum are satisfied. © 1992 The American Physical Society.
Resumo:
This paper deals with the study of the stability of nonautonomous retarded functional differential equations using the theory of dichotomic maps. After some preliminaries, we prove the theorems on simple and asymptotic stability. Some examples are given to illustrate the application of the method. Main results about asymptotic stability of the equation x′(t) = -b(t)x(t - r) and of its nonlinear generalization x′(t) = b(t) f (x(t - r)) are established. © 1998 Kluwer Academic Publishers.
Resumo:
In this paper, we consider a vector optimization problem where all functions involved are defined on Banach spaces. We obtain necessary and sufficient criteria for optimality in the form of Karush-Kuhn-Tucker conditions. We also introduce a nonsmooth dual problem and provide duality theorems.
Resumo:
The leading-twist pion-distribution amplitude is obtained at a low normalization scale of order ρc (inverse average size of an instanton). Pion dynamics, consistent with gauge invariance and low-energy theorems, is considered within the instanton vacuum model. The results are QCD-evolved to higher momentum-transfer values and are in agreement with recent data from CLEO on the pion transition form factor. It is also shown that some previous calculations violate the axial Ward-Takahashi identity. © 2001 MAIK Nauka/Interperiodica.
Resumo:
This paper proposes a solution to improve the performance of the first order Early Error Sensing (EES) Adaptive Time Delay Tanlock Loops (ATDTL) presented in (Al-Zaabi, Al-Qutayri e Al-Araji, 2005), regarding to frequency estimation and tracking time. The EES-ATDTL are phaselocked-loops (PLL) used to hardware implementations, due to their simple structure. Fixed-points theorems are used to determine conditions for rapid convergence of the estimation process and a estimative of the frecuency input is obtained with a Gaussian filter that improves the gain adaptation. The mathematical models are the presented by (Al-Araji, Al-Qutayri e Al-Zaabi, 2006). Simulations have been performed to evaluate the theoretical results.
Resumo:
In this paper, we consider a concept of local Nash equilibrium for non-cooperative games - the so-called weak local Nash equilibrium. We prove its existence for a significantly more general class of sets of strategies than compact convex sets. The theorems on existence of the weak local equilibrium presented here are applications of Brouwer and Lefschetz fixed point theorems. © 2013 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)