969 resultados para technology standard
Resumo:
Objective: To systematically review the published evidence of the impact of health information technology (HIT) on the quality of medical and health care specifically clinicians’ adherence to evidence-based guidelines and the corresponding impact this had on patient clinical outcomes. In order to be as inclusive as possible the research examined literature discussing the use of health information technologies and systems in both medical care such as clinical and surgical, and other health care such as allied health and preventive services.----- Design: Systematic review----- Data Sources: Relevant literature was systematically searched on English language studies indexed in MEDLINE and CINAHL(1998 to 2008), Cochrane Library, PubMed, Database of Abstracts of Review of Effectiveness (DARE), Google scholar and other relevant electronic databases. A search for eligible studies (matching the inclusion criteria) was also performed by searching relevant conference proceedings available through internet and electronic databases, as well as using reference lists identified from cited papers.----- Selection criteria: Studies were included in the review if they examined the impact of Electronic Health Record (EHR), Computerised Provider Order-Entry (CPOE), or Decision Support System (DS); and if the primary outcomes of the studies were focused on the level of compliance with evidence-based guidelines among clinicians. Measures could be either changes in clinical processes resulting from a change of the providers’ behaviour or specific patient outcomes that demonstrated the effectiveness of a particular treatment given by providers. ----- Methods: Studies were reviewed and summarised in tabular and text form. Due to heterogeneity between studies, meta-analysis was not performed.----- Results: Out of 17 studies that assessed the impact of health information technology on health care practitioners’ performance, 14 studies revealed a positive improvement in relation to their compliance with evidence-based guidelines. The primary domain of improvement was evident from preventive care and drug ordering studies. Results from the studies that included an assessment for patient outcomes however, were insufficient to detect either clinically or statistically important improvements as only a small proportion of these studies found benefits. For instance, only 3 studies had shown positive improvement, while 5 studies revealed either no change or adverse outcomes.----- Conclusion: Although the number of included studies was relatively small for reaching a conclusive statement about the effectiveness of health information technologies and systems on clinical care, the results demonstrated consistency with other systematic reviews previously undertaken. Widescale use of HIT has been shown to increase clinician’s adherence to guidelines in this review. Therefore, it presents ongoing opportunities to maximise the uptake of research evidence into practice for health care organisations, policy makers and stakeholders.
Resumo:
Standards are designed to promote the interoperability of products and systems by enabling different parties to develop technologies that can be used together. There is an increasing expectation in many technical communities, including open source communities, that standards will be ‘open’. However, standards are subject to legal rights which impact upon, not only their development, but also their implementation. Of central importance are intellectual property rights: technical standards may incorporate patented technologies, while the specification documents of standards are protected by copyright. This article provides an overview of the processes by which standards are developed and considers the concept of ‘interoperability’, the meaning of the term ‘open standard’ and how open standards contribute to interoperability. It explains how intellectual property rights operate in relation to standards and how they can be managed to create standards that are open, not only during their development, but also in implementation.
Resumo:
One of the classic forms of intermediate representation used for communication between compiler front-ends and back-ends are those based on abstract stack machines. It is possible to compile the stack machine instructions into machine code by means of an interpretive code generator, or to simulate the stack machine at runtime using an interpreter. This paper describes an approach intermediate between these two extremes. The front-end for a commercial Modula 2 compiler was ported to the "industry standard PC", and a partially compiling back-end written. The object code runs with the assistance of an interpreter, but may be linked with libraries which are fully compiled. The intent was to provide a programming environment on the PC which is identical to that of the same compilers on 32-bit UNIX machines. This objective has been met, and the compiler is available to educational institutions as free-ware. The design basis of the new compiler is described, and the performance critically evaluated.
Resumo:
This study examines the case of Chinese consumer's intention to adopt the upcoming mobile technology, 3G. The qualitative study involved 45 in-depth intervie3ws undertaken in three major Chemise cities to explore what perceptions, beliefs and attitudes will influence their decisions about adopting 3G. Perceived beliefs about using 3G technology were found to be important determinants. Additionally, there was evidence of influences from their social network that could motivate the adoption behaviour, as well as influence from the secondary information sources, such as the media and the Internet. Finally, some constraints were identifies that may inhibit Chinese consumers' adoption of this technology.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.
Resumo:
Over the last decade, the rapid growth and adoption of the World Wide Web has further exacerbated user needs for e±cient mechanisms for information and knowledge location, selection, and retrieval. How to gather useful and meaningful information from the Web becomes challenging to users. The capture of user information needs is key to delivering users' desired information, and user pro¯les can help to capture information needs. However, e®ectively acquiring user pro¯les is di±cult. It is argued that if user background knowledge can be speci¯ed by ontolo- gies, more accurate user pro¯les can be acquired and thus information needs can be captured e®ectively. Web users implicitly possess concept models that are obtained from their experience and education, and use the concept models in information gathering. Prior to this work, much research has attempted to use ontologies to specify user background knowledge and user concept models. However, these works have a drawback in that they cannot move beyond the subsumption of super - and sub-class structure to emphasising the speci¯c se- mantic relations in a single computational model. This has also been a challenge for years in the knowledge engineering community. Thus, using ontologies to represent user concept models and to acquire user pro¯les remains an unsolved problem in personalised Web information gathering and knowledge engineering. In this thesis, an ontology learning and mining model is proposed to acquire user pro¯les for personalised Web information gathering. The proposed compu- tational model emphasises the speci¯c is-a and part-of semantic relations in one computational model. The world knowledge and users' Local Instance Reposito- ries are used to attempt to discover and specify user background knowledge. From a world knowledge base, personalised ontologies are constructed by adopting au- tomatic or semi-automatic techniques to extract user interest concepts, focusing on user information needs. A multidimensional ontology mining method, Speci- ¯city and Exhaustivity, is also introduced in this thesis for analysing the user background knowledge discovered and speci¯ed in user personalised ontologies. The ontology learning and mining model is evaluated by comparing with human- based and state-of-the-art computational models in experiments, using a large, standard data set. The experimental results are promising for evaluation. The proposed ontology learning and mining model in this thesis helps to develop a better understanding of user pro¯le acquisition, thus providing better design of personalised Web information gathering systems. The contributions are increasingly signi¯cant, given both the rapid explosion of Web information in recent years and today's accessibility to the Internet and the full text world.
Resumo:
Motor vehicles are a major source of gaseous and particulate matter pollution in urban areas, particularly of ultrafine sized particles (diameters < 0.1 µm). Exposure to particulate matter has been found to be associated with serious health effects, including respiratory and cardiovascular disease, and mortality. Particle emissions generated by motor vehicles span a very broad size range (from around 0.003-10 µm) and are measured as different subsets of particle mass concentrations or particle number count. However, there exist scientific challenges in analysing and interpreting the large data sets on motor vehicle emission factors, and no understanding is available of the application of different particle metrics as a basis for air quality regulation. To date a comprehensive inventory covering the broad size range of particles emitted by motor vehicles, and which includes particle number, does not exist anywhere in the world. This thesis covers research related to four important and interrelated aspects pertaining to particulate matter generated by motor vehicle fleets. These include the derivation of suitable particle emission factors for use in transport modelling and health impact assessments; quantification of motor vehicle particle emission inventories; investigation of the particle characteristic modality within particle size distributions as a potential for developing air quality regulation; and review and synthesis of current knowledge on ultrafine particles as it relates to motor vehicles; and the application of these aspects to the quantification, control and management of motor vehicle particle emissions. In order to quantify emissions in terms of a comprehensive inventory, which covers the full size range of particles emitted by motor vehicle fleets, it was necessary to derive a suitable set of particle emission factors for different vehicle and road type combinations for particle number, particle volume, PM1, PM2.5 and PM1 (mass concentration of particles with aerodynamic diameters < 1 µm, < 2.5 µm and < 10 µm respectively). The very large data set of emission factors analysed in this study were sourced from measurement studies conducted in developed countries, and hence the derived set of emission factors are suitable for preparing inventories in other urban regions of the developed world. These emission factors are particularly useful for regions with a lack of measurement data to derive emission factors, or where experimental data are available but are of insufficient scope. The comprehensive particle emissions inventory presented in this thesis is the first published inventory of tailpipe particle emissions prepared for a motor vehicle fleet, and included the quantification of particle emissions covering the full size range of particles emitted by vehicles, based on measurement data. The inventory quantified particle emissions measured in terms of particle number and different particle mass size fractions. It was developed for the urban South-East Queensland fleet in Australia, and included testing the particle emission implications of future scenarios for different passenger and freight travel demand. The thesis also presents evidence of the usefulness of examining modality within particle size distributions as a basis for developing air quality regulations; and finds evidence to support the relevance of introducing a new PM1 mass ambient air quality standard for the majority of environments worldwide. The study found that a combination of PM1 and PM10 standards are likely to be a more discerning and suitable set of ambient air quality standards for controlling particles emitted from combustion and mechanically-generated sources, such as motor vehicles, than the current mass standards of PM2.5 and PM10. The study also reviewed and synthesized existing knowledge on ultrafine particles, with a specific focus on those originating from motor vehicles. It found that motor vehicles are significant contributors to both air pollution and ultrafine particles in urban areas, and that a standardized measurement procedure is not currently available for ultrafine particles. The review found discrepancies exist between outcomes of instrumentation used to measure ultrafine particles; that few data is available on ultrafine particle chemistry and composition, long term monitoring; characterization of their spatial and temporal distribution in urban areas; and that no inventories for particle number are available for motor vehicle fleets. This knowledge is critical for epidemiological studies and exposure-response assessment. Conclusions from this review included the recommendation that ultrafine particles in populated urban areas be considered a likely target for future air quality regulation based on particle number, due to their potential impacts on the environment. The research in this PhD thesis successfully integrated the elements needed to quantify and manage motor vehicle fleet emissions, and its novelty relates to the combining of expertise from two distinctly separate disciplines - from aerosol science and transport modelling. The new knowledge and concepts developed in this PhD research provide never before available data and methods which can be used to develop comprehensive, size-resolved inventories of motor vehicle particle emissions, and air quality regulations to control particle emissions to protect the health and well-being of current and future generations.
Resumo:
Bridges are an important part of society's infrastructure and reliable methods are necessary to monitor them and ensure their safety and efficiency. Bridges deteriorate with age and early detection of damage helps in prolonging the lives and prevent catastrophic failures. Most bridges still in used today were built decades ago and are now subjected to changes in load patterns, which can cause localized distress and if not corrected can result in bridge failure. In the past, monitoring of structures was usually done by means of visual inspection and tapping of the structures using a small hammer. Recent advancements of sensors and information technologies have resulted in new ways of monitoring the performance of structures. This paper briefly describes the current technologies used in bridge structures condition monitoring with its prime focus in the application of acoustic emission (AE) technology in the monitoring of bridge structures and its challenges.
Resumo:
While a range of benefits to students participating in mooting have been identified by the legal education literature, there are impediments to students participating in mooting that have been revealed by recent surveys of law students at QUT. These impediments include time, geographical location and a failure to perceive the benefits of mooting. This paper will explore the benefits of using technology to overcome these impediments, evaluate technological options to facilitate distance mooting, such as the use of Second Life, Elluminate and video conferencing, and will recommend a trial of these options.
Resumo:
Abstract—Corneal topography estimation that is based on the Placido disk principle relies on good quality of precorneal tear film and sufficiently wide eyelid (palpebral) aperture to avoid reflections from eyelashes. However, in practice, these conditions are not always fulfilled resulting in missing regions, smaller corneal coverage, and subsequently poorer estimates of corneal topography. Our aim was to enhance the standard operating range of a Placido disk videokeratoscope to obtain reliable corneal topography estimates in patients with poor tear film quality, such as encountered in those diagnosed with dry eye, and with narrower palpebral apertures as in the case of Asian subjects. This was achieved by incorporating in the instrument’s own topography estimation algorithm an image processing technique that comprises a polar-domain adaptive filter and amorphological closing operator. The experimental results from measurements of test surfaces and real corneas showed that the incorporation of the proposed technique results in better estimates of corneal topography, and, in many cases, to a significant increase in the estimated coverage area making such an enhanced videokeratoscope a better tool for clinicians.
Resumo:
The aim of this research is to examine the changing nature of risks that face journalists and media workers in the world's difficult, remote and hostile environments, and consider the 'adequacy' of managing hostile environment safety courses that some media organizations require prior to foreign assignments. The study utilizes several creative works and contributions to this area of analysis, which includes a documentary film production, course contributions, an emergency reference handbook, security and incident management reviews and a template for evacuation and contingency planning. The research acknowledges that employers have a 'duty of care' to personnel working in these environments, identifies the necessity for pre-deployment training and support, and provides a solution for organizations that wish to initiate a comprehensive framework to advise, monitor, protect and respond to incidents. Finally, it explores the possible development of a unique and holistic service to facilitate proactive and responsive support, in the form of a new profession of 'Editorial Logistics Officer' or 'Editorial Safety Officer' within media organizations. This area of research is vitally important to the profession, and the intended contribution is to introduce a simple and cost-efficient framework for media organizations that desire to implement pre-deployment training and field-support – as these programs save lives. The complete proactive and responsive services may be several years from implementation. However, this study demonstrates that the facilitation of Managing Hostile Environment (MHE) courses should be the minimum professional standard. These courses have saved lives in the past and they provide journalists with the tools to "cover the story, and not become the story."
Resumo:
These National Guidelines and Case Studies for Digital Modelling are the outcomes from one of a number of Building Information Modelling (BIM)-related projects undertaken by the CRC for Construction Innovation. Since the CRC opened its doors in 2001, the industry has seen a rapid increase in interest in BIM, and widening adoption. These guidelines and case studies are thus very timely, as the industry moves to model-based working and starts to share models in a new context called integrated practice. Governments, both federal and state, and in New Zealand are starting to outline the role they might take, so that in contrast to the adoption of 2D CAD in the early 90s, we ensure that a national, industry-wide benefit results from this new paradigm of working. Section 1 of the guidelines give us an overview of BIM: how it affects our current mode of working, what we need to do to move to fully collaborative model-based facility development. The role of open standards such as IFC is described as a mechanism to support new processes, and make the extensive design and construction information available to asset operators and managers. Digital collaboration modes, types of models, levels of detail, object properties and model management complete this section. It will be relevant for owners, managers and project leaders as well as direct users of BIM. Section 2 provides recommendations and guides for key areas of model creation and development, and the move to simulation and performance measurement. These are the more practical parts of the guidelines developed for design professionals, BIM managers, technical staff and ‘in the field’ workers. The guidelines are supported by six case studies including a summary of lessons learnt about implementing BIM in Australian building projects. A key aspect of these publications is the identification of a number of important industry actions: the need for BIM-compatible product information and a national context for classifying product data; the need for an industry agreement and setting process-for-process definition; and finally, the need to ensure a national standard for sharing data between all of the participants in the facility-development process.
Resumo:
These National Guidelines and Case Studies for Digital Modelling are the outcomes from one of a number of Building Information Modelling (BIM)-related projects undertaken by the CRC for Construction Innovation. Since the CRC opened its doors in 2001, the industry has seen a rapid increase in interest in BIM, and widening adoption. These guidelines and case studies are thus very timely, as the industry moves to model-based working and starts to share models in a new context called integrated practice. Governments, both federal and state, and in New Zealand are starting to outline the role they might take, so that in contrast to the adoption of 2D CAD in the early 90s, we ensure that a national, industry-wide benefit results from this new paradigm of working. Section 1 of the guidelines give us an overview of BIM: how it affects our current mode of working, what we need to do to move to fully collaborative model-based facility development. The role of open standards such as IFC is described as a mechanism to support new processes, and make the extensive design and construction information available to asset operators and managers. Digital collaboration modes, types of models, levels of detail, object properties and model management complete this section. It will be relevant for owners, managers and project leaders as well as direct users of BIM. Section 2 provides recommendations and guides for key areas of model creation and development, and the move to simulation and performance measurement. These are the more practical parts of the guidelines developed for design professionals, BIM managers, technical staff and ‘in the field’ workers. The guidelines are supported by six case studies including a summary of lessons learnt about implementing BIM in Australian building projects. A key aspect of these publications is the identification of a number of important industry actions: the need for BIMcompatible product information and a national context for classifying product data; the need for an industry agreement and setting process-for-process definition; and finally, the need to ensure a national standard for sharing data between all of the participants in the facility-development process.
Resumo:
The increasing diversity of the Internet has created a vast number of multilingual resources on the Web. A huge number of these documents are written in various languages other than English. Consequently, the demand for searching in non-English languages is growing exponentially. It is desirable that a search engine can search for information over collections of documents in other languages. This research investigates the techniques for developing high-quality Chinese information retrieval systems. A distinctive feature of Chinese text is that a Chinese document is a sequence of Chinese characters with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose two approaches to deal with the problems. In the first approach, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach. In the second approach, we propose a novel query expansion method which applies text mining techniques in order to find the most relevant words to extend the query. Unlike most existing query expansion methods, which generally select the highly frequent indexing terms from the retrieved documents to expand the query. In our approach, we utilize text mining techniques to find patterns from the retrieved documents that highly correlate with the query term and then use the relevant words in the patterns to expand the original query. This research project develops and implements a Chinese information retrieval system for evaluating the proposed approaches. There are two stages in the experiments. The first stage is to investigate if high accuracy segmentation can make an improvement to Chinese information retrieval. In the second stage, a text mining based query expansion approach is implemented and a further experiment has been done to compare its performance with the standard Rocchio approach with the proposed text mining based query expansion method. The NTCIR5 Chinese collections are used in the experiments. The experiment results show that by incorporating the text mining based query expansion with the hybrid model, significant improvement has been achieved in both precision and recall assessments.