996 resultados para technical assistance
Resumo:
Background Patients with Crohn’s disease (CD) have been shown to present dyspeptic symptoms more frequently than the general population. Some of these symptoms could be related to motility disorders to some degree. Then, we propose to investigate whether gastric emptying of solids in patients with inactive CD is delayed and to determine the relationships between gastric emptying and dyspeptic symptoms in inactive CD. Methods Twenty-six patients with inactive Crohn’s disease, as defined by a Crohn’s Disease Activity Index (CDAI) < 150, underwent a gastric emptying test by breath test using 13C octanoic acid coupled to a solid meal and answered a validated questionnaire (The Porto Alegre Dyspeptic Symptoms Questionnaire) to assess dyspeptic symptoms. Patients with scores ≥ 6 were considered to have dyspepsia. The control group was composed by 19 age- and sex-matched healthy volunteers. Results Patients with CD had a significantly longer t 1/2 and t lag (p<0.05) than the controls. CD patients with dyspepsia had significantly (p<0.05) prolonged gastric emptying when compared to patients without dyspeptic symptoms. When the individual symptom patterns were analyzed, only vomiting was significantly associated with delayed gastric emptying (p<0.05). There was no difference between the subgroups of patients with respect to gender, CDAI scores, disease location, clinical behavior (obstructive/obstructive) or previous gastrointestinal surgery. Conclusion Delayed gastric emptying in inactive Crohn’s disease patients seems to be associated with dyspeptic symptoms, particularly vomiting, even without any evidence of gastrointestinal obstruction.
Resumo:
Background Recent studies reported the association between SLCO1B1 polymorphisms and the development of statin-induced myopathy. In the scenario of the Brazilian population, being one of the most heterogeneous in the world, the main aim here was to evaluate SLCO1B1 polymorphisms according to ethnic groups as an initial step for future pharmacogenetic studies. Methods One hundred and eighty-two Amerindians plus 1,032 subjects from the general urban population were included. Genotypes for the SLCO1B1 rs4149056 (c.T521C, p.V174A, exon 5) and SLCO1B1 rs4363657 (g.T89595C, intron 11) polymorphisms were detected by polymerase chain reaction followed by high resolution melting analysis with the Rotor Gene 6000® instrument. Results The frequencies of the SLCO1B1 rs4149056 and rs4363657 C variant allele were higher in Amerindians (28.3% and 26.1%) and were lower in African descent subjects (5.7% and 10.8%) compared with Mulatto (14.9% and 18.2%) and Caucasian descent (14.8% and 15.4%) ethnic groups (p < 0.001 and p < 0.001, respectively). Linkage disequilibrium analysis show that these variant alleles are in different linkage disequilibrium patterns depending on the ethnic origin. Conclusion Our findings indicate interethnic differences for the SLCO1B1 rs4149056 C risk allele frequency among Brazilians. These data will be useful in the development of effective programs for stratifying individuals regarding adherence, efficacy and choice of statin-type.
Resumo:
Abstract Background Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-β1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. Methods The mRNA expression levels of TGF-β isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-β1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. Results In general, TGF-β2, TβRI and TβRII are over-expressed in more aggressive cells, except for TβRI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-β1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-β1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-β1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-β1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-β1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-β1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. Conclusion Altogether, our results support that TGF-β1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-β1 still remains a promising target for breast cancer treatment.
Resumo:
Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.
Resumo:
Abstract Background The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment. Methods The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test. Results The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO. Conclusion This work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity.
Resumo:
Background: Variations in maternal care are associated with neonatal stress, hormonal disturbances and reproductive injuries during adulthood. However, the effects of these variations on sex hormones and steroid receptors during ovary development remain undetermined. This study aimed to investigate whether variations in maternal care are able to influence the hormonal profile, follicular dynamics and expression of AR, ER-alpha and ER-beta in the ovaries of UCh rat offspring. Methods: Twenty-four adult UCh rats, aged 120 days, were randomly divided into two groups (UChA and UChB) and mated. Maternal care was assessed from birth (day 0) to the 10th postnatal day (PND). In adulthood, twenty adult female rats (UChA and UChB offspring; n = 10/group), aged 120 days, were euthanized by decapitation during the morning estrus. Results: UChA females (providing high maternal care) more frequently displayed the behaviors of carrying pups, as well as licking/grooming and arched back nursing cares. Also, mothers providing high care had elevated corticosterone levels. Additionally, offspring receiving low maternal care showed the highest estrous cycle duration, increased corticosterone and 17beta-estradiol levels, overexpression of receptors ER-alpha and ER-beta, increased numbers of primordial, antral and mature follicles and accentuated granulosa cell proliferation. Conclusions: Our study suggests that low maternal care alters corticosterone and 17beta-estradiol levels, disrupting the estrous cycle and folliculogenesis and differentially regulating the expression of ER-alpha and ER-beta in the ovaries of adult rats.
Resumo:
Background: High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the redominant mechanisms. Methods: Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results: Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion: The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training.
Resumo:
Abstract Background The city of Sao Paulo has the highest AIDS case rate, with nearly 60% in Brazil. Despite, several studies involving molecular epidemiology, lack of data regarding a large cohort study has not been published from this city. Objectives This study aimed to describe the HIV-1 subtypes, recombinant forms and drug resistance mutations, according to subtype, with emphasis on subtype C and BC recombinants in the city of São Paulo, Brazil. Study design RNA was extracted from the plasma samples of 302 HIV-1-seropositive subjects, of which 211 were drug-naive and 82 were exposed to ART. HIV-1 partial pol region sequences were used in phylogenetic analyses for subtyping and identification of drug resistance mutations. The envelope gene of subtype C and BC samples was also sequenced. Results From partial pol gene analyses, 239 samples (79.1%) were assigned as subtype B, 23 (7.6%) were F1, 16 (5.3%) were subtype C and 24 (8%) were mosaics (3 CRF28/CRF29-like). The subtype C and BC recombinants were mainly identified in drug-naïve patients (72.7%) and the heterosexual risk exposure category (86.3%), whereas for subtype B, these values were 69.9% and 57.3%, respectively (p = 0.97 and p = 0.015, respectively). An increasing trend of subtype C and BC recombinants was observed (p < 0.01). Conclusion The HIV-1 subtype C and CRFs seem to have emerged over the last few years in the city of São Paulo, principally among the heterosexual population. These findings may have an impact on preventive measures and vaccine development in Brazil.
Resumo:
Abstract Background In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral μ-opioid receptor (MOR) activation are able to direct block PGE2-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE2-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE2-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3Kγ/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3Kγ null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3Kγ (≅ 43%). Conclusions The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3Kγ/AKT signaling. This study extends a previously study of our group suggesting that PI3Kγ/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.
Resumo:
Abstract Background Cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self-renewing cell populations that constitute the bulk of tumor. Stem cells renewal and differentiation can be directly influenced by the oxygen levels of determined tissues, probably by the reduction of oxidative DNA damage in hypoxic regions, thus leading to a friendlier microenvironment, regarding to clonal expansion and for resistance to chemotherapeutic regimens. Furthermore, there have been strong data indicating a pivotal role of hypoxic niche in cancer stem cells development. There are evidence that hypoxia could drive the maintenance of CSC, via HIF-1α expression, but it still to be determined whether hypoxia markers are expressed in breast tumors presenting CD44+CD24-/low immunophenotype. Methods Immunohistochemical analysis of CD44+CD24-/low expression and its relationship with hypoxia markers and clinical outcome were evaluated in 253 samples of breast ductal carcinomas. Double-immunolabeling was performed using EnVision Doublestain System (Dako, Carpinteria, CA, USA). Slides were then scanned into high-resolution images using Aperio ScanScope XT and then, visualized in the software Image Scope (Aperio, Vista, CA, USA). Results In univariate analysis, CD44+CD24-/low expression showed association with death due to breast cancer (p = 0.035). Breast tumors expressing CD44+CD24-/low immunophenotype showed relationship with HIF-1α (p = 0.039) and negativity for HER-2 (p = 0.013). Conclusion Considering that there are strong evidences that the fraction of a tumour considered to be cancer stem cells is plastic depending upon microenvironmental signals, our findings provide further evidence that hypoxia might be related to the worse prognosis found in CD44+CD24-/low positive breast tumors.
Resumo:
Abstract Background The main focus of several studies concerned with cancer progression and metastasis is to analyze the mechanisms that allow cancer cells to interact and quickly adapt with their environment. Integrins, a family of transmembrane glycoproteins, play a major role in invasive and metastatic processes. Integrins are involved in cell adhesion in both cell-extracellular matrix and cell-cell interactions, and particularly, β1 integrin is involved in proliferation and differentiation of cells in the development of epithelial tissues. This work aimed to investigate the putative role of β1 integrin expression on survival and metastasis in patients with breast invasive ductal carcinoma (IDC). In addition, we compared the expression of β1 integrin in patients with ductal carcinoma in situ (DCIS). Methods Through tissue microarray (TMA) slides containing 225 samples of IDC and 67 samples of DCIS, β1 integrin expression was related with several immunohistochemical markers and clinicopathologic features of prognostic significance. Results β1 integrin was overexpressed in 32.8% of IDC. In IDC, β1 integrin was related with HER-2 (p = 0.019) and VEGF (p = 0.011) expression and it had a significant relationship with metastasis and death (p = 0.001 and p = 0.05, respectively). Kaplan-Meier survival analysis showed that the overexpression of this protein is very significant (p = 0.002) in specific survival (number of months between diagnosis and death caused by the disease). There were no correlation between IDC and DCIS (p = 0.559) regarding β1 integrin expression. Conclusions Considering that the expression of β1 integrin in breast cancer remains controversial, specially its relation with survival of patients, our findings provide further evidence that β1 integrin can be a marker of poor prognosis in breast cancer. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6652215267393871
Resumo:
Abstract Background Salivary Glands Malignant Neoplasms (SGMNs) account for 3-6% of head and neck cancers and 0.3% of all cancers. Tumor cells that express CD44 and CD24 exhibit a stem-cell-like behavior. CD44 is the binding site for hyaluronic acid, and CD24 is a receptor that interacts with P-selectin to induce metastasis and tumor progression. The present study aims to evaluate the expression of CD44 and CD24 on SGMNs and correlated these data with several clinicopathologic features. Methods Immunohistochemical stains for CD44 and CD24 were performed on tissue microarrays containing SGMN samples from 69 patients. The CD44, CD24 and CD44/CD24 expression phenotypes were correlated to patient clinicopathologic features and outcome. Results CD44 expression was associated with the primary site of neoplasm (p = 0.046). CD24 was associated with clinical stage III/IV (p = 0.008), T stage (p = 0,27) and lymph node (p = 0,001). The CD44/CD24 profiles were associated with the primary site of injury (p = 0.005), lymph node (p = 0.011) and T stage (p = 0.023). Univariate analysis showed a significant relationship between clinical staging and disease- free survival (p = 0.009), and the overall survival presents relation with male gender (p = 0.011) and metastasis (p = 0.027). Conclusion In summary, our investigation confirms that the clinical stage, in accordance with the literature, is the main prognostic factor for SGMN. Additionally, we have presented some evidence that the analysis of isolated CD44 and CD24 immunoexpression or the two combined markers could give prognostic information associated to clinicopathologic features in SGMN. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1284611098470676.
Resumo:
Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.
Resumo:
Background The stimulation of acupoints along the meridians, but not the non-acupoints outside of the meridians, produces analgesia. Although the acupoint is defined at the body surface, the exact location of the acupoints is not known. This study aims to examine whether the intensity and duration of the analgesic effect of electroacupuncture (EA) at the Zusanli (ST36) and Sanynjiao acupoints (SP6) change according to the depth of the stimulation. Methods Ninety-six male Wistar rats classified as responders were arbitrarily allocated into 16 groups of six rats each. Six groups received EA with uninsulated acupuncture needles (type I) or needles that were immersed in varnish and had the varnish circularly peeled 0.2 mm from the tip (type II), 0.2 mm at 3 mm (type III) or 5 mm (type IV) from the tip, or 0.2 mm at 5 and 1 mm from the tip (type V), or EA sham for 20 min. Five groups received injection of formalin into the acupoint bilaterally at 5 mm or 1 mm deep into ST36, 5 mm below ST36 but inserting the needle at 45° to the skin surface, or 5 mm deep into non-acupoints. The remaining groups received intraplantar injection of saline, 1% or 2.5% formalin. The analgesic effects were measured by the rat tail-flick test. Results The bilateral stimulation of ST36 and SP6 by uninsulated or insulated needles produced analgesia in the rat tail-flick test. The stronger and longer lasting effects occurred after EA with the types I and V needles, or injection of formalin 5 mm deep into ST36. The remaining needles produced weaker and shorter lasting effects. Slow analgesic effect also occurred after formalin injection at 1 mm or 5 mm below ST36 by inserting the needle at 45° to the skin surface. Conclusion The experimental results suggest that the efficacy of the EA stimulation depends on the spatial distribution of the current density under the needling surface rather than only the acupoint or the depth of needling.
Resumo:
Abstract Background The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical composition and agronomic characteristics of eleven experimental hybrids and two reference samples. The enzymatic digestion of untreated and chemically delignified samples was evaluated to advance the performance of the sugarcane residue (bagasse) in cellulosic-ethanol production processes. Results The ranges for the percentages of glucan, hemicellulose, lignin, and extractive (based on oven-dry biomass) of the experimental hybrids and reference samples were 38% to 43%, 25% to 32%, 17% to 24%, and 1.6% to 7.5%, respectively. The samples with the smallest amounts of lignin did not produce the largest amounts of total polysaccharides. Instead, a variable increase in the mass of a number of components, including extractives, seemed to compensate for the reduction in lignin content. Hydroxycinnamic acids accounted for a significant part of the aromatic compounds in the samples, with p-coumaric acid predominating, whereas ferulic acid was present only in low amounts. Hydroxycinnamic acids with ester linkage to the hemicelluloses varied from 2.3% to 3.6%. The percentage of total hydroxycinnamic acids (including the fraction linked to lignin through ether linkages) varied from 5.0% to 9.2%, and correlated to some extent with the lignin content. These clones released up to 31% of glucose after 72 hours of digestion with commercial cellulases, whereas chemically delignified samples led to cellulose conversion values of more than 80%. However, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during the enzymatic treatment. Conclusion Some of the experimental sugarcane hybrids did have the combined characteristics of high biomass and high sucrose production with low lignin content. Conversion of glucan to glucose by commercial cellulases was increased in the samples with low lignin content. Chemical delignification further increased the cellulose conversion to values of more than 80%. Thus, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during the enzymatic treatment.