866 resultados para synthesis of zeolites
Resumo:
Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.
Resumo:
In the last decades, the chemical synthesis of short oligonucleotides has become an important aspect of study due to the discovery of new functions for nucleic acids such as antisense oligonucleotides (ASOs), aptamers, DNAzymes, microRNA (miRNA) and small interfering RNA (siRNA). The applications in modern therapies and fundamental medicine on the treatment of different cancer diseases, viral infections and genetic disorders has established the necessity to develop scalable methods for their cheaper and easier industrial manufacture. While small scale solid-phase oligonucleotide synthesis is the method of choice in the field, various challenges still remain associated with the production of short DNA and RNA-oligomers in very large quantities. On the other hand, solution phase synthesis of oligonucleotides offers a more predictable scaling-up of the synthesis and is amenable to standard industrial manufacture techniques. In the present thesis, various protocols for the synthesis of short DNA and RNA oligomers have been studied on a peracetylated and methylated β-cyclodextrin, and also on a pentaerythritol-derived support. On using the peracetylated and methylated β-cyclodextrin soluble supports, the coupling cycle was simplified by replacement of the typical 5′-O-(4,4′-dimethoxytrityl) protecting group with an acid-labile acetal-protected 5′-O-(1-methoxy-1-methylethyl) group, which upon acid-catalyzed methanolysis released easily removable volatile products. For this reason monomeric building blocks 5′-O-(1-methoxy-1-methylethyl) 3′-(2-cyano-ethyl-N,N-diisopropylphosphoramidite) were synthesized. Alternatively, on using the precipitative pentaerythritol support, novel 2´-O-(2-cyanoethyl)-5´-O-(1-methoxy-1-methylethyl) protected phosphoramidite building blocks for RNA synthesis have been prepared and their applicability by the synthesis of a pentamer was demonstrated. Similarly, a method for the preparation of short RNAs from commercially available 5´-O-(4,4´-dimethoxytrityl)-2´-O-(tert-butyldimethyl-silyl)ribonucleoside 3´-(2-cyanoethyl-N,N-diisopropylphosphoramidite) building blocks has been developed
Resumo:
AbstractThe objective of this study was to evaluate the genetic variability for synthesis of bioactive compounds in pepper (Capsicum annuum, Solanaceae). Total phenolics, anthocyanins, carotenoids and antioxidant activity were evaluated in 14 accessions of Capsicum annuum from the Capsicum Genebank of Embrapa Temperate Agriculture (Pelotas – RS, Brazil). Thirty plants of each accession were cultivated in the field during spring and summer. The experimental design was a complete randomized block with 14 treatments (accessions) and three replications. The laboratory evaluations followed the same experimental design to field, but with two repetitions more. Seeds were discarded and opposite longitudinal portions of fruits were manually prepared for chemical analyzes. The data obtained showed high genetic variability for phenolics, anthocyanins, carotenoids and antioxidant activity. The P39, P77, P119, P143 and P302 accessions exhibited the highest levels of antioxidants, which are strongly indicated to be used in breeding programs of Capsicum peppers.
Resumo:
The work to be presented herein illustrates several important facts. First, the synthesis of BIBOL (19), a 1,4-diol derived from the monoterpene camphor has allowed us to demonstrate that oxidative dimerizations of enolates can, and do proceed with nearly complete diastereoselectivity under kinetically controlled conditions. The yield of BIBOL is now 50% on average, with a 10% yield of a second diastereomer, which is likely the result of a non-kinetic hydride reduction, thereby affording the epimeric alcohol, 20, coupled on the exo face of camphor. This implies the production of 60% of a single coupling diastereomer. No other diastereomers from the reduction were observed. The utility of BEBOL has been illustrated in early asymmetric additions of diethylzinc to aryl aldehydes, with e.e.'s as high as 25-30%. '^' To further the oxidative coupling work, the same methodology which gave rise to BIBOL was applied to the chiral pool ketone, menthone. Interestingly, this gave an excellent yield of the a-halohydrin (31), which is the result of a chlorination of menthone. This result clearly indicates the high stereoselectivity of the process regardless of the outcome, and has illustrated an interesting dichotomy between camphor and menthone. The utility of the chlorination product as a precursor other chiral ligands is currently being investigated. > ' Finally, a new series of 1,3-diols as well as a new aminoalcohol have successfully been synthesized from highly diastereoselective aldol/mannich reactions. Early studies have indicated their potential in asymmetric catalysis, while employing pi-stack interactions as a means of controlling enantioselective aldol reactions.
Resumo:
The monoconjugates of phenolic acids (i.e. coumaric acid) with polyamines such as spermidine and spermine are strikingly similar to some toxins from spiders and predatory wasps. Many plants contain phenolic acid polyamine conjugates and there is some reliable information supporting their roles as plant defense chemicals. Eleven monoacylated compounds of diamines, triamines, tetraamines and oxa-polyamine amines were prepared in three to seven steps: 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32. The synthesis proceeds through stepwise construction of the polyamine backbone (as in 62 and 72), followed by protection and deprotection steps of the amino functions. Desymmetrization of readily available and prepared symmetrical polyamines is a key step in the synthesis. The protecting groups employed were tert-butoxycarbonyl (BOC) and trifluoroacetyl (TFA) group which were removed under different conditions: acid and base respectively. Deprotection and refunctionalization of the polyamine reagent demonstrated the versatility of these systems for N-acylation.
Resumo:
Two efficient, regio- and stereo controlled synthetic approaches to the synthesis of racemic analogs of pancratistatin have been accomplished and they serve as the model systems for the total synthesis of optically active 7-deoxy-pancratistatin. In the Diels-Alder approach, an efficient [4+2] cycloaddition of 3,4-methylenedioxyco- nitrostyrene with Danishefsky's diene to selectively form an exo-nitro adduct has been developed as the key step in the construction of the C-ring of the target molecule. In the Michael addition approach, the key step was a conjugate addition of an organic zinc-cuprate to the 3,4-methylenedioxy-(B-nitrostyrene, followed by a diastereocontroUed closure to form the cyclohexane C-ring of the target molecule via an intramolecular nitro-aldol cyclization on a neutral alumina surface. A chair-like transition state for such a cyclization has been established and such a chelation controlled transition state can be useful in the prediction of diastereoselectivity in other related 6-exo-trig nitroaldol reactions. Cyclization of the above products fi^om both approaches by using a Bischler-Napieralski type reaction afforded two lycoricidine derivatives 38 and 50 in good yields. The initial results from the above modeling studies as well as the analysis of the synthetic strategy were directed to a chiral pool approach to the total synthesis of optically active 7-deoxy-pancratistatin. Selective monsilylation and iodination of Ltartaric acid provided a chiral precursor for the proposed key Michael transformation. The outlook for the total synthesis of 7-deoxy-pancratistatin by this approach is very promising.A concise synthesis of novel designed, optically pure, Cz-symmetrical disulfonylamide chiral ligands starting from L-tartaric acid has also been achieved. This sequence employs the metallation of indole followed by Sfj2 replacement of a dimesylate as the key step. The activity for this Cz-symmetric chiral disulfonamide ligand in the catalytic enantioselective reaction has been confirmed by nucleophilic addition to benzaldehyde in the disulfonamide-Ti (0-i-Pr)4-diethylzinc system with a 48% yield and a 33% e.e. value. Such a ligand tethered with a suitable metal complex should be also applicable towards the total synthesis of 7-deoxy-pancratistatin.
Resumo:
The present thesis describes our latest results in the chemistry of morphine alkaloids. An enantiodivergent synthesis of codeine utilizing a cis-cyclohexadiene diol derived from microbial whole cell oxidation of ~-bromoethylbenzene,as starting material is discussed. The total synthesis of (+)-codeine in 14 steps featuring a Mitsunobu inversion and two intramolecular Heck cyclizations is presented. Investigation of a regioselective nucleophilic opening of a homochiral vinyl oxirane, which led to a total synthesis of the natural isomer of codeine, is detailed. Furthermore, described herein are novel methodologies designed for the transformation of naturally occurring opiates into medicinally relevant derivatives. Two studies on the conversion of thebaine into the commercially available analgesic hydrocodone, two novel ·transition metal catalyzed N-demethylation procedures for opioids, and the development of a catalytic protocol for N-demethylation and Nacylation of morphine and tropane alkaloids are presented. In addition, reactions of a menthol-based version of the Burgess reagent with epoxides are discussed. The synthetic utility of this novel chiral derivative of the Burgess reagent was demonstrated by an enantiodivergent formal total synthesis of balanol. ii
Resumo:
The present studies describe, as a primary goal, our recent progess toward the synthesis of morphine alkaloids from aromatic precursors. Model substrates were synthesized which allowed investigation into Diels-Alder, radical cascade, and palladium-catalyzed bond-forming reactions as possible routes to the morphine alkaloid skeleton. As a secondary objective, three separate series of aromatic substrates were subjected to whole-cell oxidation with Escherichia coli JM 109 (pDTG601), a recombinant organism over-expressing the enzyme toluene dioxygenase. Included in this study were bromothioanisoles, dibromobenzenes, and cyclopropylbenzene derivatives. The products of oxidation were characterized by chemical conversion to known intermediates. The synthetic utility of one of these bacterial metabolites, derived from oxidation of o-dibromobenezene, was demonstrated by chemical conversion to (-)conduritol E.
Investigations towards the synthesis of isotope labelled analogues of tocopherols and tocotrienols /
Resumo:
Vitamin E is considered as the most effective lipophilic chain breaking antioxidant. a-Tocopherol and its analogues have been studied thoroughly with regards to its biokinetics and bioavailabily. Deuterated tocopherols have been synthesized and utilized in such studies. Tocotrienols are arousing more and more interest because of their high efficiency as antioxidants. However, to date, there is no effective synthetic method reported for deuterated tocotrienols. This thesis is focused on the investigation of the synthetic methods of deuterated tocotrienols and their analogues: 5-trideuteromethyl-a-tocotrienol, 5- trideuteromethyl-p-tocotrienol, tocotrienol acetate, silyl tocotrienol ether, etc. Several synthetic procedures for the preparation of poly-deuterated tocopherols are known. Mainly the deuterium is introduced by use of labelled formaldehyde and deuterated hydrogen chloride under Lewis acid catalysis. However, these methods are not effective in tocotrienols due to exchange of protons for deuterium at other sites under the acidic conditions. We developed several different approaches to generate polydeuterated tocotrienols by using both morpholinomethylation followed by reduction with NaCNBDs as deuterated reducing reagents and transmetalation strategy. The 5-trideuteromethyl-a-tocotrienol was finally obtained in a satisfactory yield of 60%. In addition, this thesis also discussed the study of structural comparison and the chemical property difference of tocopherols and tocotrienols, which provides hints to explain the reactivity difference of them towards oxidation at the C3-C4 positions.Furthermore, the methodology of halogenation and dehydrohalogenation of tocotrienol was explored to prepare a hexaene tocotrienol derivative as a florescent reporter of tocopherol.
Resumo:
To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.
Resumo:
The implementation of chiral centres within biologically active compounds has been a perplexing yet motivational force in chemistry. This work presents the attempted formation of a concurrent or sequential tandem catalyzed methodology of enantioselective nucleophilic addition and electrophilic cyclization. The 2'- arylalkynyl- aldehyde, ketone, and imine substrates used within were adeptly chosen with a dually activated structure; 1) for nucleophilic addition to the electrophilic substituents; and 2) for carbophilic activation of the alkyne substituent to undergo cyclization. To accomplish the nucleophilic addition, two distinct allylation methodologies were pursued: (/?)-BINOL catalyzed-allylboration and (5)- BINAP-AgF catalyzed-allylsilylation. BINAP catalyzed enantioselective allylation of 2'-arylalkynyl-aldehydes, to form chiral homoallylic alcohols, was successful. Homoallylic alcohols were isolated with high enantio-purity (>80%), which then underwent sequential cyclization to form chiral allylic phthalans, in moderate yields. An application of this methodology towards the construction of biologically active compounds was included with the partial synthesis of the natural product and H. pylori inhibitor, (+)-Spirolaxine methyl ether.
Resumo:
An efficient way of synthesizing the deuterium labelled analogues of three methoxypyrazine compounds: 2-d3-methoxy-3-isopropylpyrazine, 2-d3-methoxy-3- isobutylpyrazine, and 2-d3-methoxy-3-secbutylpyrazine, has been developed. To confirm that the deuterium labels had been incorporated into the expected positions in the molecules synthesized, the relevant characterization by NMR, HRMS and GC/MS analysis was conducted. Another part of this work involved quantitative determination of methoxypyrazines in water and wines. Solid-phase extraction (SPE) proved to be a suitable means for the sample separation and concentration prior to GC/MS analysis.Such factors as the presence of ethanol, salt, and acid have been investigated which can influence the recovery by SPE for the pyrazines from the water matrix. Significantly, in this work comparatively simple fractional distillation was attempted to replace the conventional steam distillation for pre-concentrating a sample with a relatively large volume prior to SPE. Finally, a real wine sample spiked with the relevant isotope-labelled methoxypyrazines was quantitatively analyzed, revealing that the wine with 10 beetles per litre contained 138 ppt of 2-methoxy-3-isopropylpyrazine. Interestingly, we have also found that 2-methoxy-3-secbutylpyrazine exhibits an extremely low detection limit in GC/MS analysis compared with the detection limit of the other two methoxypyrazines: 2- methoxy-3-isopropylpyrazine and 2-methoxy-3-isobutylpyrazine.
Synthesis of Chiral Benzimidazolylidenes from 1,10-Phenathrolines and 1,10-Phenathroline-2,9-dione /
Resumo:
A^-heterocyclic carbenes (NHCs) have become the focus of much interest as ancillary ligands for transition metal catalysts in recent years. Their structural variability and strong cy-donation properties have led to the preparation of demonstrably useful organometallic catalysts. Among the three general structural types of NHCs (imidazolylidenes, imidazolinylidenes, and benzimidazolylidenes), benzimidazolylidenes are the least investigated because of the limitation of current synthetic approaches. The preparation of chiral analogues is even more challenging. Previously, our group has demonstrated an alternative approach to synthesizing benzimidazolylidenes with a tetracyclic framework in three steps from 1,10-phenanthroline. This thesis is focused on approaches to chiral benzimidazolylidenes derived from substituted 1,10-phenanthrolines. A key step in the preparation of these ligands involves a reduction of the pyridyl rings in 1,10-phenanthrolines. Chirality can be introduced to phenanthrolines before, during, or after the reduction as illustrated by three approaches: 1) de novo construction of the phenanthroline from chiral ketones with endo and exo faces to provide a degree of diastereoselectivity during subsequent reduction; 2) introduction of substituents into the 2- and 2,9- position of phenanthroline by nucleophilic aromatic substitution, followed by a reduction-resolution sequence; and 3) use of the protected octahydrophenanthroline as a substrate for chiral induction a to nitrogen.
Resumo:
This research work has been planned with the intention of proving the absolute configuration of lactobacillc acid. During the course of this work, attempts have been made to synthesize cis-2-carboxycyclopropane- l-.acetic acid as,v,a suitable resolvable material. As the results were not satisfactory, the synthesis of ci,s-2-carboxycyclopropane-l-propionic acid has been alternatively attempted by ring opening of bicyclo- [4.1.~-heptan-2-onewithout much success. Attempts to resolve or prepare bicyclo[ 4.1.~-hePtan-2-one optically active are also reported. On the other hand, a complete scheme is described for the possible synthesis of optically active lactobacillic acid. If only bicyclo- ~.1.~ -heptan-2-one can be resolved or prepared optically active, this described scheme can be applied smoothly to the synthesis of enant~omeric lactobacillic acid.