961 resultados para surface modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry–climate model (CCM) simulations. This new volcanic forcing, covering the 1600–present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600–present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jakobshavns Isbrae (69 degrees 10'N, 49 degrees 5'W) drains about 6.5% of the Greenland ice sheet and is the fastest ice stream known. The Jakobshavns Isbrae basin of about 10 000 km(2) was mapped photogrammetrically from four sets of aerial photography, two taken in July 1985 and two in July 1986. Positions and elevations of several hundred natural features on the ice surface were determined for each epoch by photogrammetric block-aerial triangulation, and surface velocity vectors were computed from the positions. The two flights in 1985 yielded the best results and provided most common points (716) for velocity determinations and are therefore used in the modeling studies. The data from these irregularly spaced points were used to calculate ice elevations and velocity vectors at uniformly spaced grid paints 3 km apart by interpolation. The field of surface strain rates was then calculated from these gridded data and used to compute the field of surface deviatoric stresses, using the flow law of ice, for rectilinear coordinates, X, Y pointing eastward and northward. and curvilinear coordinates, L, T pointing longitudinally and transversely to the changing ice-flow direction. Ice-surface elevations and slopes were then used to calculate ice thicknesses and the fraction of the ice velocity due to basal sliding. Our calculated ice thicknesses are in fair agreement with an ice-thickness map based on seismic sounding and supplied to us by K. Echelmeyer. Ice thicknesses were subtracted from measured ice-surface elevations to map bed topography. Our calculation shows that basal sliding is significant only in the 10-15 km before Jakobshavns Isbrae becomes afloat in Jakobshavns IsfJord.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Byrd Glacier has one of the largest ice catchment areas in Antarctica, delivers more ice to the Ross Ice Shelf than any other ice stream, and is the fastest of these ice streams. A force balance, combined with a mass balance, demonstrates that stream flow in Byrd Glacier is transitional from sheet flow in East Antarctica to shelf flow in the Ross Ice Shelf. The longitudinal pulling stress, calculated along an ice flowband from the force balance, is linked to variations of ice thickness, to the ratio of the basal water pressure to the ice overburden pressure where Byrd Glacier is grounded, and is reduced by an ice-shelf buttressing stress where Byrd Glacier is floating. Longitudinal tension peaks at pressure-ratio maxima in grounded ice and close to minima in the ratio of the pulling stress to the buttressing stress in floating ice. The longitudinal spacing of these tension peaks is rather uniform and, for grounded ice, the peaks occur at maxima in surface slope that have no clear relation to the bed slope. This implies that the maxima in surface slope constitute a "wave train" that is related to regular variations in ice-bed coupling, not primarily to bed topography. It is unclear whether these surface "waves" are "standing waves" or are migrating either upslope or downslope, possibly causing the grounding line to either retreat or advance. Deciding which is the case will require obtaining bed topography in the map plane, a new map of surface topography, and more sophisticated modeling that includes ice flow linked to subglacial hydrology in the map plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a three-dimensional physical-biogeochemical model, we have investigated the modeled responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific, and compared the model simulation with in situ (IronEx II) iron fertilization results. In the eastern equatorial Pacific, an area of 540,000 km(2) was enhanced with iron by changing the photosynthetic efficiency and silicate and nitrogen uptake kinetics of phytoplankton in the model for a period of 20 days. The vertically integrated Chl a and primary production increased by about threefold 5 days after the start of the experiment, similar to that observed in the IronEx II experiment. Diatoms contribute to the initial increase of the total phytoplankton biomass, but decrease sharply after 10 days because of mesozooplankton grazing. The modeled surface nutrients (silicate and nitrate) and TCO(2) anomaly fields, obtained from the difference between the "iron addition'' and "ambient'' (without iron) concentrations, also agreed well with the IronEx II observations. The enriched patch is tracked with an inert tracer similar to the SF6 used in the IronEx II. The modeled depth-time distribution of sinking biogenic silica (BSi) indicates that it would take more than 30 days after iron injection to detect any significant BSi export out of the euphotic zone. Sensitivity studies were performed to establish the importance of fertilized patch size, duration of fertilization, and the role of mesozooplankton grazing. A larger size of the iron patch tends to produce a broader extent and longer-lasting phytoplankton blooms. Longer duration prolongs phytoplankton growth, but higher zooplankton grazing pressure prevents significant phytoplankton biomass accumulation. With the same treatment of iron fertilization in the model, lowering mesozooplankton grazing rate generates much stronger diatom bloom, but it is terminated by Si(OH)(4) limitation after the initial rapid increase. Increasing mesozooplankton grazing rate, the diatom increase due to iron addition stays at minimum level, but small phytoplankton tend to increase. The numerical model experiments demonstrate the value of ecosystem modeling for evaluating the detailed interaction between biogeochemical cycle and iron fertilization in the equatorial Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potential desiccation polygons (PDPs) are polygonal surface patterns that are a common feature in Noachian-to-Hesperian-aged phyllosilicate- and chloride-bearing terrains and have been observed with size scales that range from cm-wide (by current rovers) to 10s of meters-wide. The global distribution of PDPs shows that they share certain traits in terms of morphology and geologic setting that can aid identification and distinction from fracturing patterns caused by other processes. They are mostly associated with sedimentary deposits that display spectral evidence for the presence of Fe/Mg smectites, Al-rich smectites or less commonly kaolinites, carbonates, and sulfates. In addition, PDPs may indicate paleolacustrine environments, which are of high interest for planetary exploration, and their presence implies that the fractured units are rich in smectite minerals that may have been deposited in a standing body of water. A collective synthesis with new data, particularly from the HiRISE camera suggests that desiccation cracks may be more common on the surface of Mars than previously thought. A review of terrestrial research on desiccation processes with emphasis on the theoretical background, field studies, and modeling constraints is presented here as well and shown to be consistent with and relevant to certain polygonal patterns on Mars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll data revealed strong interannual variability in fall phytoplankton dynamics in the Gulf of Maine, with 3 general features in any one year: (1) rapid chlorophyll increases in response to storm events in fall; (2) gradual chlorophyll increases in response to seasonal wind-and cooling-induced mixing that gradually deepens the mixed layer; and (3) the absence of any observable fall bloom. We applied a mixed-layer box model and a 1-dimensional physical-biological numerical model to examine the influence of physical forcing (surface wind, heat flux, and freshening) on the mixed-layer dynamics and its impact on the entrainment of deep-water nutrients and thus on the appearance of fall bloom. The model results suggest that during early fall, the surface mixed-layer depth is controlled by both wind-and cooling-induced mixing. Strong interannual variability in mixed-layer depth has a direct impact on short-and long-term vertical nutrient fluxes and thus the fall bloom. Phytoplankton concentrations over time are sensitive to initial pre-bloom profiles of nutrients. The strength of the initial stratification can affect the modeled phytoplankton concentration, while the timing of intermittent freshening events is related to the significant interannual variability of fall blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kriging is a widely employed method for interpolating and estimating elevations from digital elevation data. Its place of prominence is due to its elegant theoretical foundation and its convenient practical implementation. From an interpolation point of view, kriging is equivalent to a thin-plate spline and is one species among the many in the genus of weighted inverse distance methods, albeit with attractive properties. However, from a statistical point of view, kriging is a best linear unbiased estimator and, consequently, has a place of distinction among all spatial estimators because any other linear estimator that performs as well as kriging (in the least squares sense) must be equivalent to kriging, assuming that the parameters of the semivariogram are known. Therefore, kriging is often held to be the gold standard of digital terrain model elevation estimation. However, I prove that, when used with local support, kriging creates discontinuous digital terrain models, which is to say, surfaces with “rips” and “tears” throughout them. This result is general; it is true for ordinary kriging, kriging with a trend, and other forms. A U.S. Geological Survey (USGS) digital elevation model was analyzed to characterize the distribution of the discontinuities. I show that the magnitude of the discontinuity does not depend on surface gradient but is strongly dependent on the size of the kriging neighborhood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°x1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32 ± 5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. These publicly accessible results will guide future parameterizations of marine ecosystem models exploring the link between phytoplankton community structure and marine biogeochemical cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. This type of dataset is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow events. Surface soil textures and soil depths from 57 points are presented as well as soil texture profiles from 14 points. Meteorological data include continuous hourly shielded, unshielded, and wind corrected precipitation, wind speed, air temperature, relative humidity, dew point temperature, and incoming solar and thermal radiation data. Sub-surface data included are hourly soil moisture data from multiple depths from 7 soil profiles within the catchment, and soil temperatures from multiple depths from 2 soil profiles. Hydrologic response data include hourly stream discharge from the catchment outlet weir, continuous snow depths from one location, intermittent snow depths from 5 locations, and snow depth and density data from ten weekly snow surveys. Though it represents only a single water year, the presentation of both above and below ground hydrologic condition makes it one of the most detailed and complete hydro-climatic datasets from the climatically sensitive rain-snow transition zone for a wide range of modeling and descriptive studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the validity of d18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM). A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM) values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST), and orbital parameters) were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (d18Oprecip) in response to individual climate factors. The change in topography (due to the change in land ice cover) played a significant role in reducing the surface temperature and d18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and d18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in d18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the d18Oprecip distribution among the simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A prominent feature in the Southeast Atlantic is the Angola-Benguela Front (ABF), the convergence between warm tropical and cold subtropical upwelled waters. At present, the sea-surface temperature (SST) gradient across the ABF and its position are influenced by the strength of southeasterly (SE) trade winds. Here, we present a record of changes in the ABF SST gradient over the last 25 kyr. Variations in this SST contrast indicate that periods of strengthened SE trade-wind intensity occurred during the Last Glacial Maximum, the Younger Dryas, and the Mid to Late Holocene, while Heinrich Event 1, the early part of the Bølling-Allerød, and the Early Holocene were periods of weakened SE trade-winds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased towards the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (~18-15 cal. ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (~21-19 cal. ka B.P.) and the pre-industrial era north of 30 ºN. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea-ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to six months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need to refine models for best-estimate calculations, based on good-quality experimental data, has been expressed in many recent meetings in the field of nuclear applications. The modeling needs arising in this respect should not be limited to the currently available macroscopic methods but should be extended to next-generation analysis techniques that focus on more microscopic processes. One of the most valuable databases identified for the thermalhydraulics modeling was developed by the Nuclear Power Engineering Corporation (NUPEC), Japan. From 1987 to 1995, NUPEC performed steady-state and transient critical power and departure from nucleate boiling (DNB) test series based on the equivalent full-size mock-ups. Considering the reliability not only of the measured data, but also other relevant parameters such as the system pressure, inlet sub-cooling and rod surface temperature, these test series supplied the first substantial database for the development of truly mechanistic and consistent models for boiling transition and critical heat flux. Over the last few years the Pennsylvania State University (PSU) under the sponsorship of the U.S. Nuclear Regulatory Commission (NRC) has prepared, organized, conducted and summarized the OECD/NRC Full-size Fine-mesh Bundle Tests (BFBT) Benchmark. The international benchmark activities have been conducted in cooperation with the Nuclear Energy Agency/Organization for Economic Co-operation and Development (NEA/OECD) and Japan Nuclear Energy Safety (JNES) organization, Japan. Consequently, the JNES has made available the Boiling Water Reactor (BWR) NUPEC database for the purposes of the benchmark. Based on the success of the OECD/NRC BFBT benchmark the JNES has decided to release also the data based on the NUPEC Pressurized Water Reactor (PWR) subchannel and bundle tests for another follow-up international benchmark entitled OECD/NRC PWR Subchannel and Bundle Tests (PSBT) benchmark. This paper presents an application of the joint Penn State University/Technical University of Madrid (UPM) version of the well-known subchannel code COBRA-TF, namely CTF, to the critical power and departure from nucleate boiling (DNB) exercises of the OECD/NRC BFBT and PSBT benchmarks