753 resultados para sulfated polysaccharides
Resumo:
Chromium (VI) removal and its reduction to chromium (III) from aqueous solution by untreated and heat-treated Quercus cerris and heat-treated Quercus suber black agglomerate cork granules was investigated. Initial screening studies revealed that among the sorbents tested, untreated Q. cerris and Q. suber black agglomerate are the most efficient in the removal of Cr(VI) ions and were selected for adsorption essays. Heat treatment adversely affected chromium adsorption and chromium (VI) reduction in Q. cerris cork. The highest metal uptake was found at pH 3.0 for Q. cerris and pH 2.0 for black agglomerate. The experimental data fitted the Langmuir model and the calculated qmax was 22.98 mg/g in black agglomerate and 21.69 mg/g in untreated Q. cerris cork. The FTIR results indicated that while in black agglomerate, lignin is the sole component responsible for Cr(VI) sorption, and in untreated Q. cerris cork, suberin and polysaccharides also play a significant role on the sorption. The SEM-EDX results imply that chromium has a homogenous distribution within both cork granules. Also, phloemic residues in Q. cerris granules showed higher chromium concentration. The results obtained in this study show that untreated Q. cerris and black agglomerate cork granules can be an effective and economical alternative to more costly materials for the treatment of liquid wastes containing chromium
Resumo:
Solid dextrans are thermally stable polysaccharides losing water only at 160ºC. According to IR, X-ray, DTA and DSC data no noticeable changes in dextran configuration occurs at this temperature. The total content of dextrans analyzed in 26 samples of Brazilian sugars and 57 samples of sweetened cachaças ranged from 109.5 to 1840 mg/kg and 1.6 to 11.2 mg/L with medians of 999.8 mg/kg and 5.9 mg/L respectively. Samples of sweeted cachaças have been monitored for turbidity, total soluble dextran content and weight of precipitate formed during 275 days. Precipitate formation is a kinetically controlled process which ends after 275 days when the total concentration of soluble dextrans becomes smaller than 0.25 mg/L.
Resumo:
A brief comment about general characteristics of polysaccharide was presented. Brazilian trade of polysaccharides was obtained from the "Ministério de Desenvolvimento, Indústria e Comércio Exterior" - Brazil. A list of these products was prepared and their price and amount analyzed in the period of 1998-2007. Some chemical properties and application of polysaccharides from our biodiversity was described. In this review they were classified by origin, in vegetal (exudate, seed, fruit, seaweed), animal and bacteria source. There is a trade deficit that can be reverted if part of the accumulated scientific knowledge was used to promote the national economic development in the field.
Resumo:
The aim of this work is to propose a methodology to evaluate the evolution of the pore blockage of limestone during the sulfation reaction. The experiments were performed for a national limestone (dolomite) with average particle size of 545 μm in interrupted sulfation tests were conducted at seven different times and at three different temperatures of the process. The empirical data were obtained from porosimetry tests to establish BET surface area, volume and average size of pore and distribution of pore sizes of the sulfated samples. Thermogravimetric tests were performed to evaluate the preparation methodology of the samples used in the porosimetry tests.
Resumo:
The pharmaceutical use of galactomannans from different sources, commercial and noncommercial, has been extensively studied over the past decade. Galactomannans show potential in the global trend towards the use of more plant-based products for ecological motives, and their production and application do not cause pollution or disturb the ecosystem. There is a variety of galactomannan sources and various pharmaceutical forms of application, such as tablets or capsules, hydrogels and films. Besides the simple use as inert excipient this polysaccharides play role in the modification of drug release, especially in colonic environmental, as a matrix or coating material.
Resumo:
In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity
Resumo:
Enzymes are biological catalysts that offer great potential for use in the synthesis and modification of polymers, being more specific and greener than chemical catalysts. In this work, enzymes from the classes of hydrolases (lipase, cutinase and protease) and of oxidoreductases (horseradish peroxidase, manganese peroxidase and laccase) were identified as the main biocatalysts responsible for the synthesis of polymers. Biocatalysis can potentially be part of the life cycle of several polymers, including polyesters, polyurethanes, polycarbonates, polyamides, functionalized polysaccharides and polystyrene, allowing the synthesis of specialty macromolecules for fine applications and with higher added-value than commodity polymers.
Resumo:
Condensation reactions of glycerol with aldehydes and ketones were performed under thermal heating and microwave irradiation regimes. Homogeneous and heterogeneous catalysts were tested in both conditions. A silica sulfated (SiO2-SO3H) heterogeneous catalyst demonstrated the best performance relative to a selectivity of >95% in favor of 5-membered ketals. For acetals, preference in favor of 5-membered or 6-membered functional groups depends on the nature of the catalyst. Homogenous catalysts favor the more stable 6-membered acetals, whereas heterogeneous catalysts favor the less stable 5-membered acetals. However, the isomer ratios in the acetalization reaction are too low, and hence the reaction cannot be used in a synthetic plan for functional materials. Ketalization processes mediated by SiO2-SO3H show a high selectivity in favor of a 5-membered ring (1,3-dioxolane). The scope of condensation was tested with different ketones. A mechanism for heterogeneous catalysis related to the selectivity in the cyclization process is presented herein. Solketal, a commercial product, was also obtained by a condensation reaction of glycerol and propanone, and showed a high selectivity in favor of 1,3-dioxolane. It was transformed to potential allylic and chiral intermediates. A mesogenic core was connected to the organic framework of glycerol to produce a monomer liquid crystal material with a stable smectic-C mesophase.
Resumo:
Hemiselluloosat kuuluvat selluloosan ja ligniinin ohella puun ja muiden kasvimateriaalien päärakenneaineksiin. Hemiselluloosan kemiallisessa koostumuksessa on eroja kasvilajien välillä, mikä tekee ryhmästä hyvin monimuotoisen. Lehtipuiden pääasiallinen hemiselluloosa on glukuroniksylaani. Ksylaaneja esiintyy laajasti myös muissa kasveissa erilaisina rakenteina. Havupuiden yleisin hemiselluloosa on puolestaan galaktoglukomannaani. Arabinogalaktaani on erityisesti lehtikuusesta runsaana löytyvä hemiselluloosa, jota muissa puulajeissa on vain vähän. Luonnon polymeerejä tutkitaan jatkuvasti muun muassa vaihtoehtojen löytämiseksi raakaöljypohjaisille tuotteille. Aiemmin hemiselluloosia on pääosin hyödynnetty sellaisenaan tai jalostettu esimerkiksi sokereiksi. Selluloosan ja tärkkelyksen tavoin ne voivat kuitenkin toimia myös kemiallisen, fysikaalisen tai entsymaattisen muokkauksen lähtöaineena. Hemiselluloosien käyttöä rajoittaa usein se, että niiden eristäminen kasvimateriaalista hyvällä saannolla on vaikeaa. Useimmiten hemiselluloosa erotetaan biomassasta ligniinin poiston jälkeen uuttamalla erilaisilla reagensseilla, kuten emäksillä. Arabinogalaktaanin erottamiseen ei kuitenkaan vaadita ankaria olosuhteita, vaan yleisimmin siihen riittää uutto vedellä. Kalvosuodatus puolestaan on hyvä keino hemiselluloosan talteenottoon uuttoliuoksista. Tässä työssä tarkasteltiin arabinogalaktaanin erotusta siperianlehtikuusesta uuttokokein. Saadut uuttoliuokset konsentrointiin ja puhdistettiin kalvosuodatusmenetelmillä. Lisäksi tutkittiin eristetyn arabinogalaktaanin käyttöä kemiallisen muokkauksen lähtöaineena, missä pyrkimyksenä oli etenkin in situ -modifiointi suoraan uuttoliuoksessa oleville yhdisteille. Uuttokokeilla saatiin kuitenkin vain pieni osa lehtikuusen arabinogalaktaanista erotetuksi. Myös kalvosuodatusvaiheen aikana menetettiin osa uuttoliuosten arabinogalaktaanista. Koska arabinogalaktaanipitoisuus uuttoliuoksissa jäi hyvin alhaiseksi, in situ -modifiointeja oli vaikea saada onnistumaan. Uutto-olosuhteiden lisätutkimuksella sekä kiinnittämällä erityistä huomiota suodatuskalvojen valintaan voitaneen pitoisuutta nostaa ja saada lisämateriaalia kemiallista muokkausta varten.
Resumo:
Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.
Resumo:
Astringency is traditionally thought to be induced by plant tannins in foods. Because of this current research concerning the mechanism of astringency is focused on tannin‐protein interactions and thus on precipitation, which may be perceived by mechanoreceptors. However, astringency is elicited by a wide range of different phenolic compounds, as well as, some non‐phenolic compounds in various foods. Many ellagitannins or smaller compounds that contribute to astringent properties do not interact with salivary proteins and may be directly perceived through some receptors. Generally, the higher degree of polymerization of proanthocyanidins can be associated with more intense astringency. However, the astringent properties of smaller phenolic compounds may not be directly predicted from the structure of a compound, although glycosylation has a significant role. The astringency of organic acids may be directly linked to the perception of sourness, and this increases along with decreasing pH. Astringency can be divided into different sub‐qualities, including even other qualities than traditional mouth‐drying, puckering or roughing sensations. Astringency is often accompanied by bitter or sour or both taste properties. The different sub‐qualities can be influenced by different astringent compounds. In general, the glycolysation of the phenolic compound results in more velvety and smooth mouthdrying astringency. Flavonol glycosides and other flavonoid compounds and ellagitannins contribute to this velvety mouthdrying astringency. Additionally, they often lack the bitter properties. Proanthocyanidins and phenolic acids elicit more puckering and roughing astringency with some additional bitter properties. Quercetin 3‐O‐rutinoside, along with other quercetin glycosides, is among the key astringent compounds in black tea and red currants. In foods, there are always various other additional attributes that are perceived at the same with astringency. Astringent compounds themselves may have other sensory characteristics, such as bitter or sour properties, or they may enhance or suppress other sensory properties. Components contributing to these other properties, such as sugars, may also have similar effects on astringent sensations. Food components eliciting sweetness or fattiness or some polymeric polysaccharides can be used to mask astringent subqualities. Astringency can generally be referred to as a negative contributor to the liking of various foods. On the other hand, perceptions of astringent properties can vary among individuals. Many genetic factors that influence perceptions of taste properties, such as variations in perceiving a bitter taste or variations in saliva, may also effect the perception of astringency. Individuals who are more sensitive to different sensations may notice the differences between astringent properties more clearly. This may not have effects on the overall perception of astringency. However, in many cases, the liking of astringent foods may need to be learned by repetitive exposure. Astringency is often among the key sensory properties forming the unique overall flavour of certain foods, and therefore it also influences whether or not a food is liked. In many cases, astringency may be an important sub‐property suppressed by other more abundant sensory properties, but it may still have a significant contribution to the overall flavour and thus consumer preferences. The results of the practical work of this thesis show that the astringent phenolic compounds are mostly located in the skin fractions of black currants, crowberries and bilberries (publications I–III). The skin fractions themselves are rather tasteless. However, the astringent phenolic compounds can be efficiently removed from these skin fractions by consecutive ethanol extractions. Berries contain a wide range of different flavonol glycosides, hydroxycinnamic acid derivatives and anthocyanins and some of them strongly contribute to the different astringent and bitterness properties. Sweetness and sourness are located in the juice fractions along with the majority of sugars and fruit acids. The sweet and sour properties of the juice may be used to mask the astringent and bitterness properties of the extracts. Enzymatic treatments increase the astringent properties and fermented flavour of the black currant juice and decrease sweetness and freshness due to the effects on chemical compositions (IV). Sourness and sweetness are positive contributors to the liking of crowberry and bilberry fractions, whereas bitterness is more negative (V). Some astringent properties in berries are clearly negative factors, whereas some may be more positive. The liking of berries is strongly influenced by various consumer background factors, such as motives and health concerns. The liking of berries and berry fractions may also be affected by genetic factors, such as variations in the gene hTAS2R38, which codes bitter taste receptors (V).
Resumo:
Knowledge of the behaviour of cellulose, hemicelluloses, and lignin during wood and pulp processing is essential for understanding and controlling the processes. Determination of monosaccharide composition gives information about the structural polysaccharide composition of wood material and helps when determining the quality of fibrous products. In addition, monitoring of the acidic degradation products gives information of the extent of degradation of lignin and polysaccharides. This work describes two capillary electrophoretic methods developed for the analysis of monosaccharides and for the determination of aliphatic carboxylic acids from alkaline oxidation solutions of lignin and wood. Capillary electrophoresis (CE), in its many variants is an alternative separation technique to chromatographic methods. In capillary zone electrophoresis (CZE) the fused silica capillary is filled with an electrolyte solution. An applied voltage generates a field across the capillary. The movement of the ions under electric field is based on the charge and hydrodynamic radius of ions. Carbohydrates contain hydroxyl groups that are ionised only in strongly alkaline conditions. After ionisation, the structures are suitable for electrophoretic analysis and identification through either indirect UV detection or electrochemical detection. The current work presents a new capillary zone electrophoretic method, relying on in-capillary reaction and direct UV detection at the wavelength of 270 nm. The method has been used for the simultaneous separation of neutral carbohydrates, including mono- and disaccharides and sugar alcohols. The in-capillary reaction produces negatively charged and UV-absorbing compounds. The optimised method was applied to real samples. The methodology is fast since no other sample preparation, except dilution, is required. A new method for aliphatic carboxylic acids in highly alkaline process liquids was developed. The goal was to develop a method for the simultaneous analysis of the dicarboxylic acids, hydroxy acids and volatile acids that are oxidation and degradation products of lignin and wood polysaccharides. The CZE method was applied to three process cases. First, the fate of lignin under alkaline oxidation conditions was monitored by determining the level of carboxylic acids from process solutions. In the second application, the degradation of spruce wood using alkaline and catalysed alkaline oxidation were compared by determining carboxylic acids from the process solutions. In addition, the effectiveness of membrane filtration and preparative liquid chromatography in the enrichment of hydroxy acids from black liquor was evaluated, by analysing the effluents with capillary electrophoresis.
Resumo:
The main objective of the present study was to verify the approach on starch-gelatin blending for the paperboard coating formulations with enhanced barrier and mechanical properties. Based on that, another objective was to find out, how the approach will function with wood-based polysaccharides (CMC, EHEC and HPC) by analyzing their barrier properties and convertibility. The last objective was to find out, if pigments can be used in the composition of polysaccharide-protein blends without causing any negative effect on stated properties. The whole process chain of the barrier coating development was studied in the research. The methodology applied included pilot-scale coating and converting trials for the evaluation of mechanical properties of obtained coatings, namely their exposure to cracking with the loss of barrier properties. The results obtained indicated that the combination of starch with gelatin, in fact, improves the grease barrier properties and flexibility of starch-based coatings, thereby confirming the offered approach. The similar results were obtained for CMC, exhibited elevated barrier properties and surface coverage, proving that the approach also functions with wood-based polysaccharides. The introduction of equal amounts of talc gave various effects at different gelatin dosages on barrier properties of wood-based polysaccharides. Mainly, the elevation of grease barrier properties was observed. The convertibility of talc-filled coatings was not sufficient.
Resumo:
The major type of non-cellulosic polysaccharides (hemicelluloses) in softwoods, the partly acetylated galactoglucomannans (GGMs), which comprise about 15% of spruce wood, have attracted growing interest because of their potential to become high-value products with applications in many areas. The main objective of this work was to explore the possibilities to extract galactoglucomannans in native, polymeric form in high yield from spruce wood with pressurised hot-water, and to obtain a deeper understanding of the process chemistry involved. Spruce (Picea abies) chips and ground wood particles were extracted using an accelerated solvent extractor (ASE) in the temperature range 160 – 180°C. Detailed chemical analyses were done on both the water extracts and the wood residues. As much as 80 – 90% of the GGMs in spruce wood, i.e. about 13% based on the original wood, could be extracted from ground spruce wood with pure water at 170 – 180°C with an extraction time of 60 min. GGMs comprised about 75% of the extracted carbohydrates and about 60% of the total dissolved solids. Other substances in the water extracts were xylans, arabinogalactans, pectins, lignin and acetic acid. The yields from chips were only about 60% of that from ground wood. Both the GGMs and other non-cellulosic polysaccharides were extensively hydrolysed at severe extraction conditions when pH dropped to the level of 3.5. Addition of sodium bicarbonate increased the yields of polymeric GGMs at low additions, 2.5 – 5 mM, where the end pH remained around 3.9. However, at higher addition levels the yields decreased, mainly because the acetyl groups in GGMs were split off, leading to a low solubility of GGMs. Extraction with buffered water in the pH range 3.8 – 4.4 gave similar yields as with plain water, but gave a higher yield of polymeric GGMs. Moreover, at these pH levels the hydrolysis of acetyl groups in GGMs was significantly inhibited. It was concluded that hot-water extraction of polymeric GGMs in good yields (up to 8% of wood) demands appropriate control of pH, in a narrow range about 4. These results were supported by a study of hydrolysis of GGM at constant pH in the range of 3.8 – 4.2 where a kinetic model for degradation of GGM was developed. The influence of wood particle size on hot-water extraction was studied with particles in the range of 0.1 – 2 mm. The smallest particles (< 0.1 mm) gave 20 – 40% higher total yield than the coarsest particles (1.25 – 2 mm). The difference was greatest at short extraction times. The results indicated that extraction of GGMs and other polysaccharides is limited mainly by the mass transfer in the fibre wall, and for coarse wood particles also in the wood matrix. Spruce sapwood, heartwood and thermomechnical pulp were also compared, but only small differences in yields and composition of extracts were found. Two methods for isolation and purification of polymeric GGMs, i.e. membrane filtration and precipitation in ethanol-water, were compared. Filtration through a series of membranes with different pore sizes separated GGMs of different molar masses, from polymers to oligomers. Polysaccharides with molar mass higher than 4 kDa were precipitated in ethanol-water. GGMs comprised about 80% of the precipitated polysaccharides. Other polysaccharides were mainly arabinoglucuronoxylans and pectins. The ethanol-precipitated GGMs were by 13C NMR spectroscopy verified to be very similar to GGMs extracted from spruce wood in low yield at a much lower temperature, 90°C. The obtained large body of experimental data could be utilised for further kinetic and economic calculations to optimise technical hot-water extractionof softwoods.
Resumo:
Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.