992 resultados para submarine landforms
Resumo:
The goal of this work was to establish comparisons among environmental degradation in different areas from Southern Spain (Gulf of Cadiz) and Brazil (Santos and Sao Vicente estuary), by using principal component analyses (PCA) to integrate sediment toxicity (amphipods mortality) and chemical-physical data (Zn, Cd, Pb; Cu, Ni, Co, V, PCBs, PAHs concentrations, OC and fines contents). The results of PCA extraction of Spanish data showed that Bay of Cadiz, CA-1 did not present contamination or degradation; CA-2 exhibited contamination by PCBs, however it was not related to the amphipods mortality. Ria of Huelva was the most impacted site, showing contamination caused principally by hydrocarbons, in HV-1 and HV-2, but heavy metals were also important contaminants at HV-1, HV-2 and HV-3. Algeciras Bay was considered as not degraded in GR-3 and -4, but in GR-3' high contamination by PAHs was found. In the Brazilian area, the most degraded sediments were found in the stations situated at the inner parts of the estuary (SSV-2, SSV-3, and SSV-4), followed by SSV-6, which is close to the Submarine Sewage Outfall of Santos - SSOS. Sediments from SSV-1 and SSV-5 did not present chemical contamination, organic contamination or significant amphipod mortality. The results, of this investigation showed that both countries present environmental degradation related to PAHs: in Spain, at Ria of Huelva and Gudarranque river's estuary areas; and in Brasil, in the internal portion of the Santos and Sao Vicente estuary. The same situation is found for heavy metals, since all of the identified metals are related to toxicity in the studied areas, with few exceptions (V for both Brazil and Spain, and Cd and Co for Brazilian areas). The contamination by PCBs is more serious for Santos and Sao Vicente estuary than for the investigated areas in Gulf of Cadiz, where such compound did not relate to the toxicity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Over the last decades, increasing water demands have fostered research to obtain high well yields in crystalline terrains where, besides the intrinsic properties of rocks, the groundwater flow depends on several factors. The depth of the wells, the lithotypes, the presence and thickness of sedimentary coverings and weathered layers, the landforms, the geological structures, and the effects of tectonic stresses are among the most investigated factors considered as determinant of well productivity. The influence of these factors on productivity of wells that exploit the Crystalline Aquifer System in the Jundiai-River Catchment, southeastern Brazil, is investigated in this work. The largest region of the studied area is located on the Precambrian Basement, partially covered by sedimentary deposits. The results show that the sedimentary deposits and the weathered layer are important for high well yield, but it also depends on the existence of a net of open fractures, in order to maintain high productivity. The sites that have more possibility of occurrence of such structures are the regional shear and fault zones and other minor structures with NW-SE and E-W directions, which characterize areas subjected to transtensional stress related to the neotectonics.
Resumo:
The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T >750 °C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramafic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events. We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 ± 2.1 Ma, Chalk Mountain 377.7 ± 2.5 Ma, Mt. Airy 334 ± 3Ma, Stone Mountain 335.6 ± 1.0 Ma, and Rabun 335.1 ± 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians. © 2006 Geological Society of America.
Resumo:
Supervising and controlling the many processes involved in petroleum production is both dangerous and complex. Herein, we propose a multiagent supervisory and control system for handle continuous processes like those in chemical and petroleum industries In its architeture, there are agents responsible for managing data production and analysis, and also the production equipments. Fuzzy controllers were used as control agents. The application of a fuzzy control system to managing an off-shore installation for petroleum production onto a submarine separation process is described. © 2008 IEEE.
Resumo:
Oceanic disposal systems of domestic sewage, or submarine sewage outfalls, have been historically used around the world as a solution for urban effluents, in special due to economic aspects. However, release into the ocean, in shallow or deep waters, may induce a set of negative environmental impacts, as eutrophication, toxic algal blooms, pathogenic microorganisms introduction and contamination by chemical substances which are capable of causing toxic effects to the biota and bioaccumulation. Thus, the release of untreated sewage into the sea does not constitute an adequate environmental practice; then, urban effluents should be treated in order to remove nutrients, contaminants and pathogenic organisms and avoid environmental degradation.
Resumo:
Agricultural and mining activities are directly related to changes in natural landscapes. From the perspective of anthropogenic geomorphology supported by general systems theory, this research has developed, in order to identify and analyze changes in the land use, mainly from agriculture and the exploitation of clay, and its implications in the hydro-geomorphological characteristics in the Santa Gertrudes Stream watershed (SP). This area is within the context of the Ceramic Pole Santa Gertrudes (SP), which besides its importance as a supplier of raw material, is characterized as the largest center of international reference in ceramic tiles on the American continent. For this purpose, we made land use and geomorphology maps of two scenarios, corresponding to the years 1962 and 2006, which allowed the identification of changes caused by human activities on the landforms of the area, such as the increase in area of parcels intended for mining activity, which went from 3.1% to occupy 19% of the catchment area of the respective period and that, among other changes, gave rise to new forms of relief as, for example, in levels of pit mining abrupt and smooth. The results indicate that the main features of representative of human changes in relief are represented for opening of large clay mining pits and agricultural activities, which intensified the denudation and sedimentation processes in the Santa Gertrudes Stream watershed.
Resumo:
The Pantanal wetland is an extensive depositional tract characterized by the presence of fluvial megafans, from which that of the Taquari River is the most extensive and well known. Located on the northern border of the Pantanal, the São Lourenço megafan is a large distributary fluvial system with an area of 16,000 km2, but poorly known regarding its geomorphological and geological features. The Sao Lourenço and the Taquari are coalescent megafans, having the Piquiri interfan meander river in between them. Based on the interpretation of satellite images and field validation, it was possible to identify channel patterns, to interpret depositional and erosional processes, to recognize the phenomena of river avulsion and to map depositional lobes. Three geomorphological zones were recognized on the São Lourenço megafan: 1) abandoned depositional lobes located in the upper/intermediate fan, composed of Pleistocene fluvial deposits and exhibiting distributary paleochannels on their surfaces, which are currently being dissected by tributary channels; 2) an active Holocene confined meander belt formed by fluvial aggradation in a N65E incised-valley; 3) active depositional lobes placed on the distal part of the system, which are the main site of sedimentation and are characterized by frequent avulsion events, channel bifurcation, distributary drainage pattern and the presence of depositional lobated landforms. The active depositional lobes were formed due to an important event of river avulsion that caused the lower portion of the meander belt to be abandoned.
Resumo:
A better understanding of the differential growth of upland rice (Oryza sativa L.) cultivars with increasing soil S availability could help improve rice yield under upland conditions. The objective of this study was to evaluate root and shoot growth and nutrition of upland traditional and modern rice cultivars as affected by S availability. The experimental design was completely randomized in a 3 (rates of S) × 3 (cultivars) factorial with four replications. Low availability of S in the soil reduces root and shoot development and the efficiency of N, P, and S uptake, as well as the concentration and content of these nutrients in rice cultivars. At 0 mg dm-3 of S, rice cultivars prioritize root growth over shoots, and the traditional cultivar does so with greater intensity. Our results suggested that more development of traditional cultivars under low S availability facilitates its adaptation in soils under this condition. On the other hand, the intermediate and modern cultivars are more responsive to S fertilization. Moreover, S fertilization allows significant increases in upland rice growth and must be considered in cropping systems aiming for high yields. © Soil Science Society of America.
Resumo:
Zircon samples from the Cenozoic São Paulo and Taubaté Basins and Mantiqueira Mountain Range (southeast Brazil) were concomitantly dated by zircon Fission Track Method (FTM) and in situ U-Pb dating method. While FTM detrital-zircon data are ideally used to provide low-temperature information, U-Pb single detrital grain ages record the time of zircon formation in igneous or high grade metamorphic environments. This methodology may be used to study the possible sources of the basins sediments. The results suggest that the São Paulo Basin is composed of sediments from just one source, the Mantiqueira Mountain Range. On the other hand, the Taubaté Basin presents further sediment sources besides the Mantiqueira Mountain Range. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Despite important progress on Amazonian floodplain research, the flooded forest of the Negro River igapó has been little investigated. In particular, no study has previously focused the linkage between fluvial geomorphology and the floristic variation across the course of the river. In this paper we describe and interpret relations between igapó forest, fluvial geomorphology and the spatial evolution of the igapó forest through the Holocene. Therefore, we investigate the effect of geomorphological units of the floodplain and channel patterns on tree diversity, composition and structural parameters of the late-successional igapó forest. Our results show that sites sharing almost identical flooding regime, exhibit variable tree assemblages, species richness and structural parameters such as basal area, tree density and tree heights, indicating a trend in which the geomorphologic styles seem to partially control the organization of igapó's tree communities. This can be also explained by the high variability of well-developed geomorphologic units in short distances and concentrated in small areas. In this dynamic the inputs from the species pool of tributary rivers play a crucial role, but also the depositional and erosional processes associated with the evolution of the floodplain during the Holocene may control floristic and structural components of the igapó forests. These results suggest that a comprehensive approach integrating floristic and geomorphologic methods is needed to understand the distribution of the complex vegetation patterns in complex floodplains such as the igapó of the Negro River. This combination of approaches may introduce a better comprehension of the temporal and spatial evolutionary analysis and a logic rationale to understand the vegetation distribution and variability in function of major landforms, soil distributions and hydrology. Thus, by integrating the past into macroecological analyses will sharpen our understanding of the underlying forces for contemporary floristic patterns along the inundation forests of the Negro River. © 2013 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)