971 resultados para species interactions
Resumo:
Lia Goncalves, Claudia Ines da Silva, and Maria Luisa Tunes Buschini (2012) Collection of pollen grains by Centris (Hemisiella) tarsata Smith (Apidae: Centridini): Is C. tarsata an oligolectic or polylectic species? Zoological Studies 51(2): 195-203. Among pollinator species, bees play a prominent role in maintaining biodiversity because they are responsible, on average, for 80% of angiosperm pollination in tropical regions. The species richness of the bee genus Centris is high in South America. In Brazil, these bees occur in many types of ecosystems. Centris tarsata is an endemic species occurring only in Brazil. No previous studies considered interactions between plants and this bee species in southern Brazil, where it is the most abundant trap-nesting bee. Accordingly, the goals of this study were to investigate plants used by this species for its larval food supply and determine if this bee is polylectic or oligolectic in this region. This work was conducted in the Parque Municipal das Araucarias, Guarapuava (PR), southern Brazil, from Mar. 2002 to Dec. 2003. Samples of pollen were collected from nests of these bees and from flowering plants in grassland and swamp areas where the nests were built. All of the samples were treated with acetolysis to obtain permanent slides. The family Solanaceae was visited most often (71%). Solanum americanum Mill. (28.6%) and Sol. variabile Mart. (42.4%) were the primary pollen sources for C. tarsata in the study area. We found that although C. tarsata visited 20 species of plants, it preferred Solanum species with poricidal anthers and pollen grains with high protein levels. This selective behavior by females of C. tarsata indicates that these bees are oligolectic in their larval provisioning in this region of southern Brazil. http://zoolstud.sinica.edu.tw/Journals/51.2/195.pdf
Resumo:
Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO2 efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (delta B-w) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, delta B-w/ANPP and delta B-w/GPP. In contrast, the 28% lower delta B-w in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.
Resumo:
Mistletoes constitute an important food resource for animals in many ecosystems. However, these plants are considered pests in urban areas because of deleterious effects they have on the host trees. Studies in urban areas were mostly focused on listing host species or procedures to control the "pest". In this sense, broader studies including several aspects of mistletoes ecology in urban ecosystems are still missing. We studied the interaction of the mistletoe, Phoradendron affine, with its dispersers and hosts in two urban sites in Uberlandia, Brazil. Phoradendron affine fruits were consumed almost exclusively by Euphonia chlorotica, which was crucial for seed germination. Parasitism was recorded in five hosts, two native (Handroanthus chrysotrichus and Tabebuia roseoalba) and three exotic species (Spathodea campanulata, Ligustrum lucidum and Melia azedarach). Mistletoes were found parasitizing larger host trees, a trend commonly reported for mistletoe-host interaction. Mistletoe seed germination was not affected by the trees species, whether host or non-host, but the radicle of germinated seeds could not penetrate the bark and seedlings invariably died in non-host species. We found a high prevalence of parasitism in our study, in comparison to what previous studies reported for natural areas. The spatial distribution of the hosts and high light incidence on isolated host trees may lead to this high prevalence in urban areas. Rather than eradicated, mistletoes in urban areas should be ecologically managed and their importance for bird species conservation must be considered. More studies to determine which bird species are favoured by mistletoe presence in urban areas will be essential for, this purpose. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches.
Resumo:
A new molecular species, MgAs, is investigated theoretically for the first time at the CASSCF/MRCI level using quintuple-zeta quality basis sets. Potential energy curves for the lowest-lying electronic states are presented as well as the associated spectroscopic constants. Dipole and transition moment functions for selected states complement this characterization. Estimates of transition probabilities and radiative life-times for the most important transitions are also reported. The effect of spin-orbit interactions is clearly reflected on the potential energy curves. Comparisons with BeAs, BeN, and BeP are made where pertinent. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Approximately 50 years ago, Nile tilapia were accidentally introduced to Brazil, and the decline of pearl cichlid populations, which has been intensified by habitat degradation, in some locations has been associated with the presence of Nile tilapia. There is, however, little strong empirical evidence for the negative interaction of non-native fish populations with native fish populations; such evidence would indicate a potential behavioural mechanism that could cause the population of the native fish to decline. In this study, we show that in fights staged between pairs of Nile tilapia and pearl cichlids of differing body size, the Nile tilapia were more aggressive than the pearl cichlid. Because this effect prevailed over body-size effects, the pearl cichlids were at a disadvantage. The niche overlap between the Nile tilapia and the pearl cichlid in nature, and the competitive advantage shown by the Nile tilapia in this study potentially represent one of several possible results of the negative interactions imposed by an invasive species. These negative effects may reduce population viability of the native species and cause competitive exclusion.
Resumo:
This paper presents a survey of the insects that feed on fruits of Psittacanthus Martius (Santalales: Loranthaceae), a hemiparasitic mistletoe genus that infects trees in Brazil and other neotropical countries. The aim of the study was to identify candidate insects for biological control of Psittacanthus mistletoes. Unripe and mature fruits were collected in several localities of Cerrado, bordering South Pantanal, Southwestern Brazil, from 29 Apr 1998 to 30 Jul 2000. A total of 24,710 fruits (54 samples) of Psittacanthus acinarius infecting 15 species from 10 plant families were evaluated. Psittacanthus acinarius (Mart.) was the most abundant and frequent species of mistletoe parasitizing trees in the ecotonal Cerrado-Pantanal. From 24,710 fruits of Psittacanthus acinarius were obtained 1,812 insect larvae including 1,806 Neosilba McAlpine (Diptera: Lonchaeidae) species and 6 Thepytus echelta (Hewitson) (Lepidoptera: Lycaenidae). From these emerged 1,550 Neosilba spp. adults and 6 T. echelta. Neosilba pantanense Strikis was described from this research. Larvae of T. echelta occurred in fruits of P. acinarius parasitizing Cecropia pachystachya Trecul (Urticaceae) and Anadenanthera colubrina (Vellozo) Brenan (Fabaceae). Larvae of Neosilba caused no adverse effects on the germination of infected fruits of Psittacanthus, because they do not eat the embryo or viscin tissues. This differs from the larvae of T. echelta that interrupted the germination of seeds by feeding on those tissues. Thepytus echelta may be a promising insect for the biological control of P. acinarius in the ecotonal Cerrado-Pantanal, although its abundance and frequency were low throughout the sampling period.
Resumo:
The rising of cold water from deeper levels characterizes coastal upwelling systems. This flow makes nutrients available in the euphotic layer, which enhances phytoplankton production and growth. On the Brazilian coast, upwelling is most intense in the Cabo Frio region (RJ). The basic knowledge of this system was reviewed in accordance with concepts of biophysical interactions. The high frequency and amplitude of the prevailing winds are the main factor promoting the rise of South Atlantic Central Water, but meanders and eddies in the Brazil Current as well as local topography and coast line are also important. Upwelling events are common during spring/summer seasons. Primary biomass is exported by virtue of the water circulation and is also controlled by rapid zooplankton predation. Small pelagic fish regulate plankton growth and in their turn are preyed on by predatory fish. Sardine furnishes an important regional fish stock. Shoreline irregularities define the embayment formation of the Marine Extractive Reserve of Arraial do Cabo making it an area with evident different intensities of upwelled water that harbors high species diversity. Consequently, on a small spatial scale there are environments with tropical and subtropical features, a point to be explored as a particularity of this ecosystem.
Resumo:
Waste products from the forest industry are to be spread in forests in Sweden to counteract nutrient depletion due to whole tree harvesting. This may increase the bioavailability of calcium (Ca) and heavy metals, such as cadmium (Cd), copper (Cu) and zinc (Zn) in forest soils. Heavy metals, like Cd, have already been enriched in forest soils in Sweden, due to deposition of air pollutions, and acidification of forest soils has increased the bioavailability of toxic metals for plant uptake. Changes in the bioavailability of metals may be reflected in altered accumulation of Ca and heavy metals in forest trees, changes in tree growth, including wood formation, and altered tree species composition. This thesis aims at examining: A) if inter- or intra- specific differences in sensitivity to Cd occur in the most common tree species of Sweden, and if so, to study if these can be explained by the uptake and distribution of Cd within the plant: B) how elevated levels of Ca, Cd, Cu and Zn affect the accumulation and attachment of metals in bark and wood, and growth of young Norway spruce (Picea abies): C) how waste products from the forest industry, such as wood ash, influence the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce. Sensitivity to Cd, and its uptake and distribution, in seedlings of Picea abies, Pinus sylvestris and Betula pendula from three regions (southern, central and northern parts) of Sweden, treated with varying concentrations of Cd, were compared. Differences in root sensitivity to Cd both among and within woody species were found and the differences could to some extent be explained by differences in uptake and translocation of Cd. The root sensitivity assays revealed that birch was the least, and spruce the most, sensitive species, both to the external and to tissue levels of Cd. The central ecotype of the species tested tended to be most Cd resistant. The radial distribution, accumulation and attachment of, and interactions between Ca and heavy metals in stems of two-year-old Norway spruce trees treated with elevated levels of Cd, Cu, Zn and/or Ca, were investigated. Further, the influence of these metals on growth, and on root metal content, was examined. Accumulation of the metals was enhanced in wood, bark and/or roots at elevated levels of the metal in question. Even at low levels of the metals, similar to after application of wood ash, an enhanced accumulation was apparent in wood and/or bark, except for Cd. The increased accumulation of Zn and Cu in the stem did not affect the growth. However, Cu decreased the accumulation of Ca in wood. Higher levels of Cu and Cd reduced the stem diameter and the toxic effect was associated with a reduced Ca content in wood. Copper and Cd also decreased the accumulation of Zn in the stem. On the other hand, elevated levels of Ca increased the stem diameter and reduced the accumulation of Cd, Cu, Zn and Mn in wood and/or bark. When metals interacted with each other the firmly bound fraction of the metal reduced was in almost all cases not affected. As an exception, Cd decreased the firmly bound fraction of Zn in the stem. The influence of pellets of wood ash (ash) or a mixture of wood ash and green liquor dregs (ash+GLD), in the amount of 3000 kg ha-1, on the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce in the field was examined. The effect of the treatments on the metal content of bark and wood was larger after 3 years than after 6 years. Treatment with ash+GLD had less effect on the heavy metal content of bark and wood than treatment with ash alone. The ash treatment increased the Cu and Zn content in bark and wood, respectively, after 3 years, and decreased the Ca content of the wood after 6 years. The ash+GLD treatment increased the Ca content of the bark and decreased the Zn content of bark and wood after 3 years. Both treatments reduced, or tended to decrease, the Cd content in wood and bark at both times. To conclude, small changes in the bioavailability of Ca, Cu, Cd and Zn in forest soils, such as after spreading pellets of wood ash or a mixture of wood ash and green liquor dregs from the forest industry, will be reflected in an altered accumulation of metals in wood and bark of Norway spruce. It will not only be reflected in changed accumulation of those metals in which bioavailability in the soil has been enhanced, but also of other metals, probably partly due to interactions between metals. When metals interact the exchangeable bound fraction of the metal reduced is suggested to be the main fraction affected. The small alterations in accumulation of metals should not affect the growth of Norway spruce, especially since the changes in accumulation of metals are low, and further since these decrease over time. However, as an exception, one positive and maybe persistent effect of the waste products is that these may decrease the accumulation of Cd in Norway spruce, which partly may be explained by competition with Ca for uptake, translocation and binding. A decreased accumulation of Cd in Norway spruce will probably affect the trees positively, since Norway spruce is one of the most sensitive species to Cd of the forest trees in Sweden. Thus, spreading of waste products from the forest industry may be a solution to decrease the accumulation of Cd in Norway spruce. In a longer perspective, this will decrease the risk of Cd altering the tree species composition of the forest ecosystem. An elevated bioavailability of Ca in forest soils will, in addition to Cd, probably also decrease the accumulation of other less competitive heavy metals, like Zn and Mn, in the stem.
Resumo:
Rationale: Coralligenous habitat is considered the second most important subtidal “hot spot” of species diversity in the Mediterranean Sea after the Posidonia oceanica meadows. It can be defined as a typical Mediterranean biogenic hard bottom, mainly produced by the accumulation of calcareous encrusting algae that, together with other builder organisms, form a multidimensional framework with a high micro-spatial variability. The development of this habitat depends on physical factors (i.e. light, hydrodynamism, nutrients, etc.), but also biologic interactions can play a relevant role in structuring the benthic assemblages. This great environmental heterogeneity allows several different assemblages to coexist in a reduced space. One of the most beautiful is that characterised by the Mediterranean gorgonian Paramuricea clavata (Risso, 1826) that can contribute to above 40% of total biomass of the community and brings significant structural complexity into the coralligenous habitat. In sites moderately exposed to waves and currents, P. clavata can form high-density populations (up to 60 colonies m-2) between 20 – 70 m in depth. Being a suspension feeder, where it forms dense populations, P. clavata plays a significant role in transferring energy from planktonic to benthic system. The effects of the branched colonies of P. clavata could be comparable to those of the forests on land. They can affect the micro scale hydrodynamism and light, promoting or inhibiting the growth of other species. Unfortunately, gorgonians are threatened by several anthropogenic disturbance factors (i.e. fishing, pollution, tourism) and by climatic anomalies, linked to the global changes, that are responsible of thermal stress, development of mucilage and enhanced pathogens activity, leading to mass mortality events in last decades. Till now, the possible effects of gorgonian forest loss are largely unknown. Our goal was to analyse the ecological role of these sea fan forests on the coralligenous benthic assemblages. Experimental setup and main results: The influence of P. clavata in the settlement and recruitment of epibenthic organisms was analysed by a field experiment carried out in two randomly selected places: Tavolara island and Portofino promontory. The experiment consisted in recreate the presence and absence of the gorgonian forest on recruitment panels, arranged in four plots per type (forested and non-forested), interspersed each other, and deployed at the same depth. On every forested panel 3 gorgonian colonies about 20 cm height were grafted with the use of Eppendorf tubes and epoxy resin bicomponent simulating a density of 190 sea fans per m-2. This density corresponds to a mean biomass of 825 g DW m-2,3 which is of the same order of magnitude of the natural high-density populations. After about 4 months, the panels were collected and analysed in laboratory in order to estimate the percent cover of all the species that have colonized the substrata. The gorgonian forest effects were tested by multivariate and univariate permutational analyses of the variance (PERMANOVA). Recruited assemblages largely differed between the two study sites, probably due to different environmental conditions including water quality and turbidity. On overall, the presence of P. clavata reduced the settlement and recruitment of several algae: the shadow caused by the gorgonian might reduce light availability and therefore their growth. This effect might be greater in places where the waters are on average more clear, since at Portofino it is less visible and could be masked by the high turbidity of the water. The same pattern was registered for forams, more abundant outside gorgonian forest, probably linked with algal distribution, shadowing effect or alimentary competition. The last one hypothesis could be valid also for serpulids polychaetes that growth mainly on non-forested panels. An opposite trend, was showed by a species of bryozoan and by an hydroid that is facilitated by the presence of P. clavata, probably because it attenuates irradiance level and hydrodynamism. Species diversity was significantly reduced by the presence of P. clavata forests at both sites. This seems in contrast with what we expected, but the result may be influenced by the large algal component on non-forested panels. The analysis confirmed the presence of differences in the species diversity among plots and between sites respectively due to natural high variability of the coralligenous system and to different local environment conditions. The reduction of species diversity due to the presence of gorgonians appeared related to a worst evenness rather than to less species richness. With our experiment it is demonstrated that the presence of P. clavata forests can significantly alter local coralligenous assemblages patterns, promoting or inhibiting the recruitment of some species, modifying trophic relationships and adding heterogeneity and complexity to the habitat. Moreover, P. clavata could have a stabilising effect on the coralligenous assemblages.
Resumo:
For the safety assessment of radioactive waste, the possibility of radionuclide migration has to be considered. Since Np (and also Th due to the long-lived 232-Th) will be responsible for the greatest amount of radioactivity one million years after discharge from the reactor, its (im)-mobilization in the geosphere is of great importance. Furthermore, the chemistry of Np(V) is quite similar (but not identical) to the chemistry of Pu(V). Three species of neptunium may be found in the near field of the waste disposal, but pentavalent neptunium is the most abundant species under a wide range of natural conditions. Within this work, the interaction of Np(V) with the clay mineral montmorillonite and melanodins (as model substances for humic acids) was studied. The sorption of neptunium onto gibbsite, a model clay for montmorillonite, was also investigated. The sorption of neptunium onto γ-alumina and montmorillonite was studied in a parallel doctoral work by S. Dierking. Neptunium is only found in ultra trace amounts in the environment. Therefore, sensitive and specific methods are needed for its determination. The sorption was determined by γ spectroscopy and LSC for the whole concentration range studied. In addition the combination of these techniques with ultrafiltration allowed the study of Np(V) complexation with melanoidins. Regrettably, the available speciation methods (e.g. CE-ICP-MS and EXAFS) are not capable to detect the environmentally relevant neptunium concentrations. Therefore, a combination of batch experiments and speciation analyses was performed. Further, the preparation of hybrid clay-based materials (HCM) montmorillonitemelanoidins for sorption studies was achieved. The formation of hybrid materials begins in the interlayers of the montmorillonite, and then the organic material spreads over the surface of the mineral. The sorption of Np onto HCM was studied at the environmentally relevant concentrations and the results obtained were compared with those predicted by the linear additive model by Samadfam. The sorption of neptunium onto gibbsite was studied in batch experiments and the sorption maximum determined at pH~8.5. The sorption isotherm pointed to the presence of strong and weak sorption sites in gibbsite. The Np speciation was studied by using EXAFS, which showed that the sorbed species was Np(V). The influence of M42 type melanodins on the sorption of Np(V) onto montmorillonite was also investigated at pH 7. The sorption of the melanoidins was affected by the order in which the components were added and by ionic strength. The sorption of Np was affected by ionic strength, pointing to outer sphere sorption, whereas the presence of increasing amounts of melanoidins had little influence on Np sorption.
Resumo:
Parasitic wasps attack a number of insect species on which they feed, either externally or internally. This requires very effective strategies for suppressing the immune response and a finely tuned interference with the host physiology that is co-opted for the developing parasitoid progeny. The wealth of physiological host alterations is mediated by virulence factors encoded by the wasp or, in some cases, by polydnaviruses (PDVs), unique viral symbionts injected into the host at oviposition along with the egg, venom and ovarian secretions. PDVs are among the most powerful immunosuppressors in nature, targeting insect defense barriers at different levels. During my PhD research program I have used Drosophila melanogaster as a model to expand the functional analysis of virulence factors encoded by PDV focusing on the molecular processes underlying the disruption of the host endocrine system. I focused my research on a member of the ankyrin (ank) gene family, an immunosuppressant found in bracovirus, which associates with the parasitic wasp Toxoneuron nigriceps. I found that ankyrin disrupts ecdysone biosynthesis by impairing the vesicular traffic of ecdysteroid precursors in the cells of the prothoracic gland and results in developmental arrest.
Resumo:
The dissertation entitled "Tuning of magnetic exchange interactions between organic radicals through bond and space" comprises eight chapters. In the initial part of chapter 1, an overview of organic radicals and their applications were discussed and in the latter part motivation and objective of thesis was described. As the EPR spectroscopy is a necessary tool to study organic radicals, the basic principles of EPR spectroscopy were discussed in chapter 2. rnAntiferromagnetically coupled species can be considered as a source of interacting bosons. Consequently, such biradicals can serve as molecular models of a gas of magnetic excitations which can be used for quantum computing or quantum information processing. Notably, initial small triplet state population in weakly AF coupled biradicals can be switched into larger in the presence of applied magnetic field. Such biradical systems are promising molecular models for studying the phenomena of magnetic field-induced Bose-Einstein condensation in the solid state. To observe such phenomena it is very important to control the intra- as well as inter-molecular magnetic exchange interactions. Chapters 3 to 5 deals with the tuning of intra- and inter-molecular exchange interactions utilizing different approaches. Some of which include changing the length of π-spacer, introduction of functional groups, metal complex formation with diamagnetic metal ion, variation of radical moieties etc. During this study I came across two very interesting molecules 2,7-TMPNO and BPNO, which exist in semi-quinoid form and exhibits characteristic of the biradical and quinoid form simultaneously. The 2,7-TMPNO possesses the singlet-triplet energy gap of ΔEST = –1185 K. So it is nearly unrealistic to observe the magnetic field induced spin switching. So we studied the spin switching of this molecule by photo-excitation which was discussed in chapter 6. The structural similarity of BPNO with Tschitschibabin’s HC allowed us to dig the discrepancies related to ground state of Tschitschibabin’s hydrocarbon(Discussed in chapter 7). Finally, in chapter 8 the synthesis and characterization of a neutral paramagnetic HBC derivative (HBCNO) is discussed. The magneto liquid crystalline properties of HBCNO were studied by DSC and EPR spectroscopy.rn
Resumo:
In einem Ökosystem beeinflussen sich Tiere gegenseitig in erster Linie durch direkte Interaktionen. Ihr Verhalten kann aber auch indirekt durch chemotaktile Stoffe die andere Tiere in der Umwelt hinterlassen beeinflusst werden. Vergleichbar zu direkten Interaktionen können indirekt ausgelöste Verhaltensänderungen einen starken Einfluss auf Populationsdynamiken und Gemeinschaftsstrukturen eines Ökosystems haben. Obwohl das daran gehegte Interesse der Ökologen in den letzten Jahrzenten stark gestiegen ist, fehlen immer noch Studien, welche über mehrere Arten hinweg versuchen die übergreifende Relevanz von chemotaktilen Stoffen herauszufinden. Im Rahmen meiner Doktorarbeit untersuchte ich daher wie sich mehrere mitteleuropäische Arthropodenarten, abhängig von deren interspezifischen Räuber-Beute- und Konkurrenzbeziehungen, mittels chemotaktiler Stoffe beeinflussen können. Mithilfe unterschiedlicher Verhaltensversuche konnte ich empirisch nachweisen, dass verschiedene Arthropoden chemotaktile Stoffe zu ihrem eigenen Vorteil nutzen können. Außerdem zeigen meine Ergebnisse, dass die Verhaltensänderungen artspezifisch und abhängig von den jeweiligen Lebenszyklen und den damit verbundenen Eigenschaften (z.B. Körpergröße, Häufigkeit oder Rangordnung) der beteiligten Arten sind. Ich vermute daher, dass Arthropoden chemotaktile Stoffe ihrer Gegenspieler wahrnehmen und interpretieren können. Eine Verhaltensänderung scheint jedoch nur dann statt zu finden wenn ein Nichtreagieren starke Fitnesskosten mit sich führen würde. Zusammenfassend zeigen die Ergebnisse meiner Doktorarbeit, wie wichtig es ist, die Bedeutung von chemotaktilen Stoffen innerhalb vieler Arten einer Gemeinschaft zu testen, um die den Verhaltensänderungen zugrundeliegenden Ursachen identifizieren zu können. Dies wiederum stellt die Grundlage, um die ökologische Relevanz von chemotaktilen Stoffen und deren mögliche Effekte auf Ökosystemfunktionen besser zu verstehen.
Resumo:
Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.