997 resultados para spatial encoding
Resumo:
1. Statistical modelling is often used to relate sparse biological survey data to remotely derived environmental predictors, thereby providing a basis for predictively mapping biodiversity across an entire region of interest. The most popular strategy for such modelling has been to model distributions of individual species one at a time. Spatial modelling of biodiversity at the community level may, however, confer significant benefits for applications involving very large numbers of species, particularly if many of these species are recorded infrequently. 2. Community-level modelling combines data from multiple species and produces information on spatial pattern in the distribution of biodiversity at a collective community level instead of, or in addition to, the level of individual species. Spatial outputs from community-level modelling include predictive mapping of community types (groups of locations with similar species composition), species groups (groups of species with similar distributions), axes or gradients of compositional variation, levels of compositional dissimilarity between pairs of locations, and various macro-ecological properties (e.g. species richness). 3. Three broad modelling strategies can be used to generate these outputs: (i) 'assemble first, predict later', in which biological survey data are first classified, ordinated or aggregated to produce community-level entities or attributes that are then modelled in relation to environmental predictors; (ii) 'predict first, assemble later', in which individual species are modelled one at a time as a function of environmental variables, to produce a stack of species distribution maps that is then subjected to classification, ordination or aggregation; and (iii) 'assemble and predict together', in which all species are modelled simultaneously, within a single integrated modelling process. These strategies each have particular strengths and weaknesses, depending on the intended purpose of modelling and the type, quality and quantity of data involved. 4. Synthesis and applications. The potential benefits of modelling large multispecies data sets using community-level, as opposed to species-level, approaches include faster processing, increased power to detect shared patterns of environmental response across rarely recorded species, and enhanced capacity to synthesize complex data into a form more readily interpretable by scientists and decision-makers. Community-level modelling therefore deserves to be considered more often, and more widely, as a potential alternative or supplement to modelling individual species.
Resumo:
Sound localization relies on the analysis of interaural time and intensity differences, as well as attenuation patterns by the outer ear. We investigated the relative contributions of interaural time and intensity difference cues to sound localization by testing 60 healthy subjects: 25 with focal left and 25 with focal right hemispheric brain damage. Group and single-case behavioural analyses, as well as anatomo-clinical correlations, confirmed that deficits were more frequent and much more severe after right than left hemispheric lesions and for the processing of interaural time than intensity difference cues. For spatial processing based on interaural time difference cues, different error types were evident in the individual data. Deficits in discriminating between neighbouring positions occurred in both hemispaces after focal right hemispheric brain damage, but were restricted to the contralesional hemispace after focal left hemispheric brain damage. Alloacusis (perceptual shifts across the midline) occurred only after focal right hemispheric brain damage and was associated with minor or severe deficits in position discrimination. During spatial processing based on interaural intensity cues, deficits were less severe in the right hemispheric brain damage than left hemispheric brain damage group and no alloacusis occurred. These results, matched to anatomical data, suggest the existence of a binaural sound localization system predominantly based on interaural time difference cues and primarily supported by the right hemisphere. More generally, our data suggest that two distinct mechanisms contribute to: (i) the precise computation of spatial coordinates allowing spatial comparison within the contralateral hemispace for the left hemisphere and the whole space for the right hemisphere; and (ii) the building up of global auditory spatial representations in right temporo-parietal cortices.
Resumo:
Spatial econometrics has been criticized by some economists because some model specifications have been driven by data-analytic considerations rather than having a firm foundation in economic theory. In particular this applies to the so-called W matrix, which is integral to the structure of endogenous and exogenous spatial lags, and to spatial error processes, and which are almost the sine qua non of spatial econometrics. Moreover it has been suggested that the significance of a spatially lagged dependent variable involving W may be misleading, since it may be simply picking up the effects of omitted spatially dependent variables, incorrectly suggesting the existence of a spillover mechanism. In this paper we review the theoretical and empirical rationale for network dependence and spatial externalities as embodied in spatially lagged variables, arguing that failing to acknowledge their presence at least leads to biased inference, can be a cause of inconsistent estimation, and leads to an incorrect understanding of true causal processes.
Resumo:
In this paper we examine whether variations in the level of public capital across Spain‟s Provinces affected productivity levels over the period 1996-2005. The analysis is motivated by contemporary urban economics theory, involving a production function for the competitive sector of the economy („industry‟) which includes the level of composite services derived from „service‟ firms under monopolistic competition. The outcome is potentially increasing returns to scale resulting from pecuniary externalities deriving from internal increasing returns in the monopolistic competition sector. We extend the production function by also making (log) labour efficiency a function of (log) total public capital stock and (log) human capital stock, leading to a simple and empirically tractable reduced form linking productivity level to density of employment, human capital and public capital stock. The model is further extended to include technological externalities or spillovers across provinces. Using panel data methodology, we find significant elasticities for total capital stock and for human capital stock, and a significant impact for employment density. The finding that the effect of public capital is significantly different from zero, indicating that it has a direct effect even after controlling for employment density, is contrary to some of the earlier research findings which leave the question of the impact of public capital unresolved.
Resumo:
In multilevel modelling, interest in modeling the nested structure of hierarchical data has been accompanied by increasing attention to different forms of spatial interactions across different levels of the hierarchy. Neglecting such interactions is likely to create problems of inference, which typically assumes independence. In this paper we review approaches to multilevel modelling with spatial effects, and attempt to connect the two literatures, discussing the advantages and limitations of various approaches.
Resumo:
Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.
Resumo:
While estimates of models with spatial interaction are very sensitive to the choice of spatial weights, considerable uncertainty surrounds de nition of spatial weights in most studies with cross-section dependence. We show that, in the spatial error model the spatial weights matrix is only partially identi ed, and is fully identifi ed under the structural constraint of symmetry. For the spatial error model, we propose a new methodology for estimation of spatial weights under the assumption of symmetric spatial weights, with extensions to other important spatial models. The methodology is applied to regional housing markets in the UK, providing an estimated spatial weights matrix that generates several new hypotheses about the economic and socio-cultural drivers of spatial di¤usion in housing demand.
Resumo:
In recent years, multi-atlas fusion methods have gainedsignificant attention in medical image segmentation. Inthis paper, we propose a general Markov Random Field(MRF) based framework that can perform edge-preservingsmoothing of the labels at the time of fusing the labelsitself. More specifically, we formulate the label fusionproblem with MRF-based neighborhood priors, as an energyminimization problem containing a unary data term and apairwise smoothness term. We present how the existingfusion methods like majority voting, global weightedvoting and local weighted voting methods can be reframedto profit from the proposed framework, for generatingmore accurate segmentations as well as more contiguoussegmentations by getting rid of holes and islands. Theproposed framework is evaluated for segmenting lymphnodes in 3D head and neck CT images. A comparison ofvarious fusion algorithms is also presented.
Resumo:
The Conservative Party emerged from the 2010 United Kingdom General Election as the largest single party, but their support was not geographically uniform. In this paper, we estimate a hierarchical Bayesian spatial probit model that tests for the presence of regional voting effects. This model allows for the estimation of individual region-specic effects on the probability of Conservative Party success, incorporating information on the spatial relationships between the regions of the mainland United Kingdom. After controlling for a range of important covariates, we find that these spatial relationships are significant and that our individual region-specic effects estimates provide additional evidence of North-South variations in Conservative Party support.
Resumo:
There is a long and detailed history of attempts to understand what causes crime. One of the most prominent strands of this literature has sought to better understand the relationship between economic conditions and crime. Following Becker (1968), the economic argument is that in an attempt to maintain consumption in the face of unemployment, people may resort to sources of illicit income. In a similar manner, we might expect ex–ante, that increases in the level of personal indebtedness would be likely to provide similar incentives to engage in criminality. In this paper we seek to understand the spatial pattern of property and theft crimes using a range of socioeconomic variables, including data on the level of personal indebtedness.
Resumo:
We used whole-exome sequencing to study three individuals with a distinct condition characterized by short stature, chondrodysplasia with brachydactyly, congenital joint dislocations, cleft palate, and facial dysmorphism. Affected individuals carried homozygous missense mutations in IMPAD1, the gene coding for gPAPP, a Golgi-resident nucleotide phosphatase that hydrolyzes phosphoadenosine phosphate (PAP), the byproduct of sulfotransferase reactions, to AMP. The mutations affected residues in or adjacent to the phosphatase active site and are predicted to impair enzyme activity. A fourth unrelated patient was subsequently found to be homozygous for a premature termination codon in IMPAD1. Impad1 inactivation in mice has previously been shown to produce chondrodysplasia with abnormal joint formation and impaired proteoglycan sulfation. The human chondrodysplasia associated with gPAPP deficiency joins a growing number of skeletoarticular conditions associated with defective synthesis of sulfated proteoglycans, highlighting the importance of proteoglycans in the development of skeletal elements and joints.
Resumo:
There is a long and detailed history of attempts to understand what causes crime. One of the most prominent strands of this literature has sought to better understand the relationship between economic conditions and crime. Following Becker (1968), the economic argument is that in an attempt to maintain consumption in the face of unemployment, people may resort to sources of illicit income. In a similar manner, we might expect ex–ante, that increases in the level of personal indebtedness would be likely to provide similar incentives to engage in criminality. In this paper we seek to understand the spatial pattern of property and theft crimes using a range of socioeconomic variables, including data on the level of personal indebtedness.
Resumo:
En el periodo 2005-2008 hemos publicado tres artículos sobre las alteraciones de los astrocitos reactivos en el cerebro durante el envejecimiento. En el primer estudio, evaluamos la capacidad neuroprotectora de los astrocitos en un modelo experimental in vitro de envejecimiento. Los cambios en el estrés oxidativo, la captación del glutamato y la expresión proteica fueron evaluados en los astrocitos corticales de rata cultivados durante 10 y 90 días in vitro (DIV). Los astrocitos envejecidos tenían una capacidad reducida de mantener la supervivencia neuronal. Estos resultados indican que los astrocitos pueden perder parcialmente su capacidad neuroprotectora durante el envejecimiento. En el segundo estudio el factor neurotrófico derivado de la línea glial (GDNF) fue probado para observar sus efectos neurotróficos contra la atrofia neuronal que causa déficits cognitivos en la vejez. Las ratas envejecidas Fisher 344 con deficiencias en el laberinto de Morris recibieron inyecciones intrahippocampales de un vector lentiviral que codifica GDNF humano en los astrocitos o del mismo vector que codifica la proteína fluorescente verde humana como control. El GDNF secretado por los astrocitos mejoró la función de la neurona como se muestra por aumentos locales en la síntesis de los neurotransmisores acetilcolina, dopamina y serotonina. El aprendizaje espacial y la prueba de memoria demostraron un aumento significativo en las capacidades cognitivas debido a la exposición de GDNF, mientras que las ratas control mantuvieron sus resultados al nivel del azar. Estos resultados confirman el amplio espectro de la acción neurotrófica del GDNF y abre nuevas posibilidades de terapia génica para reducir la neurodegeneración asociada al envejecimiento. En el último estudio, examinamos cambios en la fosforilación de tau, el estrés oxidativo y la captación de glutamato en los cultivos primarios de astrocitos corticales de ratones neonatos de senescencia acelerada (SAMP8) y ratones resistentes a la senescencia (SAMR1). Nuestros resultados indican que las alteraciones en cultivos del astrocitos de los ratones SAMP8 son similares a las detectadas en cerebros enteros de los ratones SAMP8 de 1-5 meses de edad. Por otra parte, nuestros resultados sugieren que esta preparación in vitro es adecuada para estudiar en este modelo murino el envejecimiento temprano y sus procesos moleculares y celulares.
Resumo:
Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.
Resumo:
Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.