985 resultados para soybean produtivity
Adhesion of uredospores of Phakopsora pachyrhizi on soybean seeds and their viability during storage
Resumo:
To study adhesion and viability of uredospores of the fungus Phakopsora pachyrhizi on soybean seeds during storage, suspension tests of those uredospores were carried out by washing seeds at each 30 days interval. Furthermore, germination and inoculation tests of uredospores on soybean plants were performed with uredospores collected from seeds of two soybean production areas, located in the municipalities "Chapada dos Guimarães" and "Tangará da Serra", State of Mato Grosso, Brazil. High levels of uredospores infestation were detected before storage [249.31 and 85.18 uredospores/100 seeds (U/100)] on seeds collected in both localities, respectively. After 30 days storage, these figures were 46.12 and 122.5 U/100; at 60 days were 14.62 and 26.62 U/100; and at 90 days were only 2.87 and 3,68 U/100, respectively; dropping to zero after 120 days storage. The percentage of germinated uredospores decreased with increasing storage periods and at 120 days germination percentage was nil. When uredospores were inoculated on soybean plants, rust symptoms were only observed for uredospores collected from freshly harvested seeds. Uredospores associated to soybean seed germinate until 90 days after storage, but are not viable after this time span. Infection of plants only occurs with inoculation of uredospores obtained from freshly harvested seeds.
Resumo:
The objective of this study was to investigate the possibility of using hydric restriction as a method for evaluating vigor of soybean seeds. The soybean seeds, cultivar BRS 245RR, represented by four different seed lots, were characterized by germination and vigor. For the treatment of hydric restriction and temperature, the combination of substrate water potential and temperature were the following: deionized water (0.0 MPa); polyethylene glycol (PEG 6000) aqueous solution (-0.1, -0.3 and -0.5 MPa); and four temperatures (20 ºC, 25 ºC, 30 ºC, and 35 ºC), respectively. A completely randomized experimental design was used, with four replications per treatment, and the ANOVA was performed individually for each combination of temperature and water potential of substrate. According to results obtained, the test of hydric restriction has the same efficiency of the accelerated aging test in estimating vigor of soybean seeds, cv. BRS 245RR, when water potentials of -0.1 MPa or -0.3 MPa at a temperature of 25 ºC, or -0.3 MPa at a temperature of 30 ºC are used.
Resumo:
In consequence of several studies and speculations concerning the issue of RR transgenic soybean after the application of glyphosate, additional scientific investigations became necessary to clarify the actual viability of the product use when applied in different developmental stages of the soybean crop. Therefore, this study was aimed to evaluate the physiological quality as well as seed health quality of RR soybean subjected to application of the herbicide glyphosate in different phonological stages of the transgenic soybean, cultivar CD 219RR. For this, an experiment with a complete block experimental design with treatments randomly distributed within the block, with four replications, was carried out. The assessed treatments were foliar sprayings of glyphosate in three increasing dosages [0 (control); 1,440 g ha-1; and 2,880 g ha-1] of acid equivalent, applied in two crop developmental stages: vegetative (V6) and reproductive (R2). The variables assessed were: germination; first count of germination; fresh and dry mass of seedlings, lengths of seedling and root; vigor and viability by the tetrazolium test; and seed health quality. Glyphosate application may adversely affect physiological quality of RR soybean seeds, when applied in dosages varying from 1,440 to 2,880 g acid equivalent per hectare at the stages V6 and R2.
Resumo:
The objective of this study was to evaluate physiological quality, content, and activity of antioxidants, in soybean seeds subjected to accelerated aging during different periods. Seeds of cultivars BRS 258, BRS 262 and BRS 268, subjected to accelerated aging during 12, 24, 36 and 48 hours and non-aged seeds were used. After each aging period, the seed were evaluated by tests of: germination; first count and tetrazolium. The total of phenolic compounds, total flavonoides, total of isoflavones, and activity for eliminating ABTS●+ radicals were quantified. There were differences among cultivars according to vigor and viability only after seeds were aged. Cultivars BRS 158 and BRS 268 have shown better seed physiological quality in each aging period; however, not presenting higher amounts of isoflavones and efficiency in removing free radicals. For all cultivars, the values for total of phenolic compounds, as well as total of flavonoids have shown quadratic positive behavior; the values for isoflavones remained constant and the vigor and viability showed contrary trend to activity of antioxidant agents.
Resumo:
Seed quality may be affected by several factors, including permeability, color, and lignin content in the seed coat. This study aimed at evaluating influence of lignin content in the tegument of seed samples of six different soybean cultivars, in which half of each sample was inoculated with the fungus Aspergillus flavus, on the physical and physiological quality, and on the seed health, during 180 days storage period, under cold chamber with controlled conditions of temperature and RH. For that, at each interval of 60 days, samples were removed, and the physiological quality of these seeds was assessed by means of moisture and lignin contents; and by tests of seed health, germination, and electrical conductivity. The moisture content of seeds remained constant during all storage period. In the seed health test, it was found that inoculation was efficient, once the minimum incidence of the fungus in the inoculated seeds was 85%. In the germination test, there was a trend of reduction on percentage germination with the increase in storage period. However, there was an increase on electrical conductivity of seeds assessed. It was concluded that there is no interference of the lignin content in the seed coat on the resistance to infection by the fungus Aspergillus flavus, even after seed storage for a period of 180 days.
Resumo:
The difficulty on identifying, lack of segregation systems and absence of suitable standards for coexistence of non trangenic and transgenic soybean are contributing for contaminations that occur during productive system. The objective of this study was to evaluate the efficiency of two methods for detecting mixtures of seeds genetically modified (GM) into samples of non-GM soybean, in a way that seed lots can be assessed within the standards established by seed legislation. Two sizes of soybean samples (200 and 400 seeds), cv. BRSMG 810C (non-GM) and BRSMG 850GRR (GM), were assessed with four contamination levels (addition of GM seeds, for obtaining 0.0%, 0.5%, 1.0%, and 1.5% contamination), and two detection methods: immunoassay of lateral flux (ILF) and bioassay (pre-imbibition into 0.6% herbicide solution; 25 ºC; 16 h). The bioassay is efficient in detecting presence of GM seeds in seed samples of non-GM soybean, even for contamination lower than 1.0%, provided that seeds have high physiological quality. The ILF was positive, detecting the presence of target protein in contaminated samples, indicating test effectiveness. There was significant correlation between the two detection methods (r = 0.82; p < 0.0001). Sample size did not influence efficiency of the two methods in detecting presence of GM seeds.
Resumo:
Young soybean plants (Glycine ~. L. cultivar Harosoy '63), grown under controlled conditions, were exposed to gamma radiation on a single occasion. One hour following exposure to 3,750 rads, the mature trifoliate leaf of the soybean plant was isolated in a closed system and permitted to photoassimilate approximately 1-5 pCi of 14C02 for 15 minutes. After an additional 45 minute-period, the plant was sacrificed and the magnitude of translocation and distribution pattern of 14C determined. In the non-irradiated plants 18~ of the total 14C recovered was outside the fed leaf blades and of this translocated 14c, 28~ was above the node of the fed leaf, 38~ in the stem below the node, 28~ in the roots and 7~ in the petiole. As well, in the irradiated plants, a smaller per cent (6~) of the total 14 C recovered was exported out of the source leaf blades. Of this translocated 14c , a smaller per cent (20~) was found in the apical region above the node of the source leaf and a higher per cent (45~) was recovered from the stem below the node and in the petiole (11~). The per cent of exported 14 C recovered from the root was unaffected by the radiation. Replacement of the shoot apex with 20 ppm IAA immediately following irradiation, only J partially increased the magnitude of translocation but did completely restore the pattern of distribution to that observed in the non-irradiated plants. From supplementary studies showing a radiationinduced reduction of photosynthetic rates in the source leaf and a reduction of the cumulative stem and leaf lengths in the apical sink region, the observed effects of radiation on the translocation process have been correlated to damage incurred by the source and sink regions. These data suggest that the reduction in the magnitude of translocation is the result of damage to both the source and sink regions rather than the phloem conducting tissue itself, whereas the change in the pattern of translocation is probably the result of a reduced rate of 14C-assimilate movement caused by a radiation-induced decrease of sink metabolism, especially the decrease in the metabolism of the apical sink.
Resumo:
Soybean (Glycine ~ (L.) Merr. cv. Harosoy 63) plants inoculated with Rhizobium japonicum were grown in vermiculite in the presence or absence of nitrate fertilization for up to 6 weeks after planting. Overall growth of nodulated plants was enhanced in the presence of nitrate fertilization, while the extent of nodule development was reduced. Although the number of nodules was not affected by nitrate fertilization when plants were grown at a light intensity limiting for photosynthesis, at light intensities approaching or exceeding the light saturation point for photosynthesis, nitrate fertilization resulted in at least a 30% reduction in nodule numbers. The mature, first trifoliate leaf of 21 day old plants was allowed to photoassimi1ate 14C02. One hour after·· the initial exposure to 14C02, the , plants were harvested and the 14C radioactivity was determined in the 80% ethanol-soluble fraction: in. o:rider to assess· "the extent of photoassimilate export and the pattern of distribution of exported 14C. The magnitude of 14C export was not affected by the presence of nitrate fertilization. However, there was a significant effect on the distribution pattern, particularly with regard to the partitioning of 14C-photosynthate between the nodules and the root tissue. In the presence of nitrate fertilization, less than 6% of the exported 14C photosynthate was recovered from the nodules, with much larger amounts (approximately 37%) being recovered from the root tissue. In the absence of nitrate fertilization, recovery of exported 14C-photosynthate from the nodules (19 to 27%) was approximately equal to that from the root tissue (24 to 33%). By initiating- or terminating the applications of nitrate at 14 days of age, it was determined that the period from day 14 to day 21 after planting was particularly significant for the development of nodules initiated earlier. Addition of nitrate fertilization at this time inhibited further nodule development while stimulating plant growth, whereas removal of nitrate fertilization stimulated nodule development. The results obtained are consistent with the hypothesis that nodule development is inhibited by nitrate fertilization through a reduction in the availability of photosynthate to the nodules.
Resumo:
The objective of this study was to determine the optimum row spacing to improve the productivity of two soybean (Glycine max L.) varieties under the tropical hot sub-moist agroecological conditions of Ethiopia. A two-year split-plot design experiment was conducted to determine the effect of variety (Awasa-95 [early-maturing], Afgat [medium-maturing]) and row spacing (RS: 20, 25, 30, 35, 40, 45, 50, 55, 60 cm) on the productivity, nodulation and weed infestation of soybean. Seed and total dry matter (TDM) yield per ha and per plant, and weed dry biomass per m^2 were significantly affected by RS. Soybean variety had a significant effect on plant density at harvest and some yield components (plant height, number of seeds/pod, and 1000 seed weight). Generally, seed and TDM yield per ha and per plant were high at 40 cm RS, and weed dry biomass per m^2 was higher for RS >= 40 cm than for narrower RS. However, the results did not demonstrate a consistent pattern along the RS gradient. The medium-maturing variety Afgat experienced higher mortality and ended up with lower final plant density at harvest, but higher plant height, number of seeds per pod and 1000 seed weight than the early-maturing variety Awasa-95. The results indicate that 40 cm RS with 5 cm plant spacing within a row can be used for high productivity and low weed infestation of both soybean varieties in the hot sub-moist tropical environment of south-western Ethiopia.
Resumo:
This study evaluated the effect of starter culture and fermentation period on the isoflavone content of protein-rich soybeans variety TG145. Initially, soybeans were washed, soaked in water for 16 h and autoclaved at 121°C for 40min. Three different bacterial starter cultures (~104 CFU/g) namely Bacillus subtilis BEST195, B. subtilis Asaichiban and B. subtilis TN51 were then added and the fermentation was allowed to proceed at 42°C for 24 h (natto-style) and 72 h (thua nao-style). The quantities of six major isoflavones (daidzin, genistin, glycitin, daidzein, genistein, and glycitein) were then determined in these fermented soybean products using reverse phase HPLC technique. Generally, our results clearly showed that the content of total isoflavones in the fermented products prepared by Bacillus starter cultures greatly increased ranging from 43 to 99% compared to that of the unfermented autoclaved soybeans. In addition, a dramatic increase of aglycones was also observed (> 400%) in the soybean products fermented by Bacillus subtilis strain TN51. This present study suggests a promising use of Bacillus starter cultures in improving isoflavone compounds especially the aglycones which would benefit for novel functional food development.
Resumo:
A feedlot trial was conducted to determine the effect of dietary vitamin A concentration and roasted soybean (SB) inclusion on carcass characteristics, adipose tissue cellularity, and muscle fatty acid composition. Angus-crossbred steers (n = 168; 295 +/- 1.8 kg) were allotted to 24 pens (7 steers each). Four treatments, in a 2 x 2 factorial arrangement, were investigated: no supplemental vitamin A, no roasted soybeans (NANS); no vitamin A, roasted SB (20% of the diet on a DM basis; NASB); with supplemental (2,700 IU/kg) vitamin A, no roasted SB (WANS); and with supplemental vitamin A, roasted SB (WASB). Diets included high moisture corn, 5% corn silage, 10 to 20% supplement, and 20% roasted SB in the SB treatments on a DM basis. The calculated vitamin A concentration in the basal diet was < 1,300 IU/kg of DM. Blood samples (2 steers/pen) were collected for serum vitamin A determination. Steers were slaughtered after 168 d on feed. Carcass characteristics and LM composition were determined. Fatty acid composition of LM was analyzed, and adipose cellularity in the i.m. and s.c. depots was determined. No vitamin A x SB interactions were detected (P > 0.10) for cattle performance, carcass composition, or muscle fatty acid composition. Low vitamin A diets (NA) did not affect (P > 0.05) ADG, DMI, or G:F. Quality grade tended (P = 0.07) to be greater in NA steers. Marbling scores and the percentage of carcasses grading > or = Choice(-) were 10% greater for NA steers, although these trends were not significant (P = 0.11 and 0.13, respectively). Backfat thickness and yield grade were not affected (P > 0.26) by vitamin A supplementation. Composition of the LM was not affected (P > 0.15) by vitamin A or SB supplementation. Serum retinol at slaughter was 44% lower (P < 0.01) for steers fed NA than for steers supplemented with vitamin A (23.0 vs. 41.1 microg/dL). A vitamin A x SB interaction occurred (P < 0.05) for adipose cellularity in the i.m. depot; when no SB was fed, vitamin A supplementation decreased cell density and increased cell size. However, when SB was fed, vitamin A supplementation did not affect adipose cellularity. Adipose cellularity at the s.c. depot was not affected (P > 0.18) by vitamin A or SB treatments. Fatty acid profile of the LM was not affected by vitamin A (P > 0.05), but SB increased (P < 0.05) PUFA (7.88 vs. 4.30 g/100 g). It was concluded that feeding NA tended to increase marbling without affecting back-fat and yield grade. It appeared that NA induced hyperplasia in the i.m. but not in the s.c. fat depot.
Resumo:
The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7 h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The objective of the present studies was to determine effects of basal dietary forage source on the response of milk fatty acid composition to an oil supplement based (2:1, respectively, w/w) on soybean oil and marine algae biomass oil high in cis-9, cis-12 C18:2n − 3 and C22:6n − 3, respectively. In Study 1, Hampshire × Dorset ewes (48) were randomly assigned to one of four treatments and 12 pens in a completely randomized design blocked on the basis of lambing date and number of lambs suckled. Control rations (60:40 forage:concentrate, dry matter (DM) basis) based on alfalfa pellets (AP) or corn silage (CS) were fed from lambing. Beginning at 22 days postpartum, three pens of ewes fed AP and three pens of ewes fed CS were supplemented with oil (30 g/kg of ration DM) in place of corn meal. Average ewe DM intake (DMI) and average daily gain (ADG) were measured weekly. Milk yield and composition were measured at 42 days postpartum. DMI was lower (P<0.02) for CS and for oil, but milk yield was not affected by forage source or oil supplementation. Milk fat content was higher for oil (P<0.10) and milk protein content was higher for AP (P<0.04). Total CLA concentration (g/100 g fatty acids) increased (P<0.01) with CS and oil, and the response to oil was greater for AP (P<0.04). Similarly, total trans-C18:1 and C22:6ω−3 concentrations were higher for CS and oil, but the response to oil was greater for CS (P<0.06 and P<0.01, respectively). In Study 2, the experiment was repeated using alfalfa haylage (AH) instead of AP. The DMI decreased (P<0.05) with oil feeding, but was not affected by forage source. Milk yield was decreased by feeding oil with AH, but not by feeding oil with CS (P<0.03). Milk fat content tended to be increased by feeding oil with AH, but tended to be decreased by feeding oil with CS (P<0.08). Total CLA concentration was increased (P<0.01) for AH versus CS and by oil, and the response to oil supplementation was greater for AH (P<0.01). In contrast, total trans-C18:1 concentration was higher for CS versus AH, with a greater response to oil for CS (P<0.05). Feeding marine oil increased the C22:6ω−3 (P<0.01) concentration, and the response was greater for AH (P<0.04). To further characterize the response of milk fat composition to dietary oil in ewes, a third study used six pens of three ewes each assigned to either the control CS diet used for Study 2 or the same diet supplemented with 45 g/kg (DM basis) of the oil mixture. Feeding oil had no effect on DMI, milk yield or milk fat concentration, but again increased (P<0.001) total trans-C18:1 and C22:6ω−3 concentrations and numerically increased (114%) total CLA concentration. Milk fatty acid composition responses to supplemental vegetable and marine oils were affected by forage source. Milk trans-C18:1 concentration was higher when CS was fed in Studies 1 and 2, but the effect of forage species on CLA concentration differed between studies, which may reflect differences in diet PUFA content and consumption, as well as amounts of dietary starch and fiber consumed. Despite large increases in trans-C18:1 concentration, milk fat content was not decreased by feeding unsaturated oils to ewes, even at diet levels of 45 g/kg of ration DM.
Resumo:
The presence of savory peptides in moromi has been investigated. Moromi was prepared by fermenting yellow soybean using Aspergillus oryzae as the starter at the first step (mold fermentation) and 20% brine solution at the next step (brine fermentation). The moromi was then ultrafiltered stepwise using membranes with MW cut-offs of 10,000, 3,000, and 500 Da, respectively. The fraction with MW < 500 Da was chromatographed using Sephadex G-25 SF to yield four fractions, 1-4. Analysis of soluble peptides, NaCl content, alpha-amino nitrogen, amino acid composition, peptide profile using CE coupled with DAD, taste profile and free glutamic acid content, were performed for each fraction. Fraction 2 contained a relatively high total glutamic acid content, but a relatively low free glutamic acid content and had the highest umami taste. This fraction also had more peptides containing non-aromatic amino acids than the other fractions. The peptides present in fraction 2 may play a role, at least in part, in its intense umami taste.
Resumo:
Postembedding immunoelectron microscopy has been used to investigate the diffusibility of an endo-beta-1,4-glucanase and a xylanase from A. niger in soybean. The results showed more specific localisation of the enzymes into the protein and lipid bodies of soybean cells. This was against our hypothesis that suggested that the enzymes should be localised in the cell wall.