845 resultados para solid catalysts
Resumo:
In the Morris water maze (MWM) task, proprioceptive information is likely to have a poor accuracy due to movement inertia. Hence, in this condition, dynamic visual information providing information on linear and angular acceleration would play a critical role in spatial navigation. To investigate this assumption we compared rat's spatial performance in the MWM and in the homing hole board (HB) tasks using a 1.5 Hz stroboscopic illumination. In the MWM, rats trained in the stroboscopic condition needed more time than those trained in a continuous light condition to reach the hidden platform. They expressed also little accuracy during the probe trial. In the HB task, in contrast, place learning remained unaffected by the stroboscopic light condition. The deficit in the MWM was thus complete, affecting both escape latency and discrimination of the reinforced area, and was thus task specific. This dissociation confirms that dynamic visual information is crucial to spatial navigation in the MWM whereas spatial navigation on solid ground is mediated by a multisensory integration, and thus less dependent on visual information.
Resumo:
Antigen from Yersinia pestis was adsorbed on cellulose acetate discs (0.5 cm of diameter) which were obtained from dialysis membrane by using a paper punch. ELISA for human plague diagnosis was carried out employing this matrix and was capable to detect amount of 1.3 µg of antigen, 3,200 times diluted positive serum using human anti-IgG conjugate diluted 1:4,000. No relevant antigen lixiviation from the cellulose acetate was observed even after washing the discs 15 times. The discs were impregnated by the coloured products from the ELISA development allowing its use in dot-ELISA. Furthermore, cellulose acetate showed a better performance than the conventional PVC plates.
Resumo:
Tools for the genetic manipulation of Trypanosoma cruzi are largely unavailable, although several vectors for transfection of epimastigotes and expression of foreign or recombinant genes have been developed. We have previously constructed several plasmid vectors in which recombinant genes are expressed in T. cruzi using the rRNA promoter. In this report, we demonstrate that one of these vectors can simultaneously mediate expression of neomycin phosphotransferase and green fluorescent protein when used to stably transfect cultured epimastigotes. These stably transfected epimastigotes can be selected and cloned as unique colonies on solid medium. We describe a simple colony PCR approach to the screening of these T. cruzi colonies for relevant genes. Thus, the methodologies outlined herein provide important new tools for the genetic dissection of this important parasite.
Resumo:
Annual influenza vaccination is recommended in solid organ transplant (SOT) recipients. However, concerns have been raised about the impact of vaccination on antigraft alloimmunity. We evaluated the humoral alloimmune responses to influenza vaccination in a cohort of SOT recipients between October 2008 and December 2011. Anti-HLA antibodies were measured before and 4-8 weeks after influenza vaccination using a solid-phase assay. Overall, 169 SOT recipients were included (kidney = 136, lung = 26, liver = 3, and combined = 4). Five (2.9%) of 169 patients developed de novo anti-HLA antibodies after vaccination, including one patient who developed donor-specific antibodies (DSA) 8 months after vaccination. In patients with pre-existing anti-HLA antibodies, median MFI was not significantly different before and after vaccination (P = 0.73 for class I and P = 0.20 for class II anti-HLA antibodies) and no development of de novo DSA was observed. Five episodes of rejection (2.9%) were observed within 12 months after vaccination, and only one patient had de novo anti-HLA antibodies. The incidence of development of anti-HLA antibodies after influenza vaccination in our cohort of SOT recipients was very low. Our findings indicate that influenza vaccination is safe and does not trigger humoral alloimmune responses in SOT recipients.
Resumo:
Solid phase microextraction (SPME) has been widely used for many years in various applications, such as environmental and water samples, food and fragrance analysis, or biological fluids. The aim of this study was to suggest the SPME method as an alternative to conventional techniques used in the evaluation of worker exposure to benzene, toluene, ethylbenzene, and xylene (BTEX). Polymethylsiloxane-carboxen (PDMS/CAR) showed as the most effective stationary phase material for sorbing BTEX among other materials (polyacrylate, PDMS, PDMS/divinylbenzene, Carbowax/divinylbenzene). Various experimental conditions were studied to apply SPME to BTEX quantitation in field situations. The uptake rate of the selected fiber (75 microm PDMS/CAR) was determined for each analyte at various concentrations, relative humidities, and airflow velocities from static (calm air) to dynamic (> 200 cm/s) conditions. The SPME method also was compared with the National Institute of Occupational Safety and Health method 1501. Unlike the latter, the SPME approach fulfills the new requirement for the threshold limit value-short term exposure limit (TLV-STEL) of 2.5 ppm for benzene (8 mg/m(3))
Resumo:
Immunodetection of human IgG anti-Toxocara canis was developed based on ELISA and on the use of polysiloxane/polyvinyl alcohol (POS/PVA) beads. A recombinant antigen was covalently immobilized, via glutaraldehyde, onto this hybrid inorganic-organic composite, which was prepared by the sol-gel technique. Using only 31.2 ng antigen per bead, a peroxidase conjugate dilution of 1:10,000 and a serum dilution of 1:200 were adequate for the establishment of the procedure. This procedure is comparable to that which utilizes the adsorption of the antigen to conventional PVC plates. However, the difference between positive and negative sera mean absorbances was larger for this new glass based assay. In addition to the performance of the POS/PVA bead as a matrix for immunodetection, its easy synthesis and low cost are additional advantages for commercial application.
Resumo:
A solution of (18)F was standardised with a 4pibeta-4pigamma coincidence counting system in which the beta detector is a one-inch diameter cylindrical UPS89 plastic scintillator, positioned at the bottom of a well-type 5''x5'' NaI(Tl) gamma-ray detector. Almost full detection efficiency-which was varied downwards electronically-was achieved in the beta-channel. Aliquots of this (18)F solution were also measured using 4pigamma NaI(Tl) integral counting and Monte Carlo calculated efficiencies as well as the CIEMAT-NIST method. Secondary measurements of the same solution were also performed with an IG11 ionisation chamber whose equivalent activity is traceable to the Système International de Référence through the contribution IRA-METAS made to it in 2001; IRA's degree of equivalence was found to be close to the key comparison reference value (KCRV). The (18)F activity predicted by this coincidence system agrees closely with the ionisation chamber measurement and is compatible within one standard deviation of the other primary measurements. This work demonstrates that our new coincidence system can standardise short-lived radionuclides used in nuclear medicine.
Resumo:
The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. Findings: Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). Conclusions: Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species.
Resumo:
PURPOSE OF REVIEW: We reviewed the most recent literature on solid-organ transplant (SOT) recipients regarding the clinical significance of influenza and the immunogenicity and safety of influenza vaccine in this population. RECENT FINDINGS: In SOT recipients, influenza is associated with significant graft dysfunction and even mortality. Early initiation of antiviral therapy is associated with a reduced risk for influenza-associated complications, mainly pneumonia. The main preventive strategy against influenza in SOT recipients remains the administration of yearly influenza vaccine. Although most studies have shown that influenza vaccination is safe after transplantation, impaired responses are expected in more immunosuppressed patients. A lower immunogenicity of influenza vaccine has been described in patients receiving mycophenolate and mammalian target of rapamycin inhibitors. The optimal timing of vaccination after transplant remains to be determined, although vaccination during the early posttransplant period appears to be safe. Novel vaccination strategies, such as intradermal vaccination or use of adjuvanted vaccines, have been evaluated in SOT recipients, with inconclusive results to date. SUMMARY: The administration of influenza vaccination is strongly recommended in SOT recipients and their relatives. Further research is needed for improving the immunogenicity of influenza vaccine in this population.
Resumo:
BACKGROUND The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. FINDINGS Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). CONCLUSIONS Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species.
Resumo:
BACKGROUND Cabazitaxel is approved in patients with metastatic hormone-refractory prostate cancer previously treated with a docetaxel-containing regimen. This study evaluated a weekly cabazitaxel dosing regimen. Primary objectives were to report dose-limiting toxicities (DLTs) and to determine the maximum tolerated dose (MTD). Efficacy, safety and pharmacokinetics were secondary objectives. METHODS Cabazitaxel was administered weekly (1-hour intravenous infusion at 1.5-12 mg/m2 doses) for the first 4 weeks of a 5-week cycle in patients with solid tumours. Monitoring of DLTs was used to determine the MTD and the recommended weekly dose. RESULTS Thirty-one patients were enrolled. Two of six patients experienced DLTs at 12 mg/m2, which was declared the MTD. Gastrointestinal disorders were the most common adverse event. Eight patients developed neutropenia (three ≥ Grade 3); one occurrence of febrile neutropenia was reported. There were two partial responses (in breast cancer) and 13 patients had stable disease (median duration of 3.3 months). Increases in Cmax and AUC0-t were dose proportional for the 6-12 mg/m2 doses. CONCLUSION The MTD of weekly cabazitaxel was 12 mg/m2 and the recommended weekly dose was 10 mg/m2. The observed safety profile and antitumour activity of cabazitaxel were consistent with those observed with other taxanes in similar dosing regimens. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov as NCT01755390.