892 resultados para sheet metal work


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present preliminary results for the estimation of barium [Ba/Fe], and strontium [Sr/Fe], abundances ratios using medium-resolution spectra (1-2 angstrom). We established a calibration between the abundance ratios and line indices for Ba and Sr, using multiple regression and artificial neural network techniques. A comparison between the two techniques (showing the advantage of the latter), as well as a discussion of future work, is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a systematic study of SO2 molecules interacting with pristine and transition metal (TM) covered C-60 is presented by means of first principles calculations. It is observed that the SO2 molecule interacts weakly with the pristine C-60 fullerene, although the resulting interaction is largely increased when the C-60 structure is covered with Fe, Mn, or Ti atoms and the SO2 Molecules are bounded through the TM atoms. The number of bounded SO2 molecules per TM atoms, in addition to the elevated binding energies per molecules, allows us to conclude that such composites can be used as a template for efficient devices to remove SO2 molecules or, alternatively, as SO2 gas sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, Mg-Ni-based metastable alloys have been attracting attention due to their large hydrogen sorption capacities, low weight, low cost, and high availability. Despite the large discharge capacity and high activity of these alloys, the accelerated degradation of the discharge capacity after only few cycles of charge and discharge is the main shortcoming against their commercial use in batteries. The addition of alloying elements showed to be an effective way of improving the electrode performance of Mg-Ni-based alloys. In the present work, the effect of Ti and Pt alloying elements on the structure and electrode performance of a binary Mg-Ni alloy was investigated. The XRD and HRTEM revealed that all the investigated alloy compositions had multi-phase nanostructures, with crystallite size in the range of 6 nm. Moreover, the investigated alloying elements demonstrated remarkable improvements of both maximum discharge capacity and cycling life. Simultaneous addition of Ti and Pd demonstrated a synergetic effect on the electrochemical properties of the alloy electrodes. Among the investigated alloys, the best electrochemical performance was obtained for the Mg(51)Ti(4)Ni(43)Pt(2) composition (in at.%), which achieved 448 mAh g(-1) of maximum discharge capacity and retained almost 66% of this capacity after 10 cycles. In contrast, the binary Mg(55)Ni(45) alloy achieved only 248 mAh g(-1) and retained 11% of this capacity after 10 cycles. (C) 2010 Elsevier By. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on the tribological performance of tool surfaces in two steel working operations, namely wire drawing and hot rolling. In all forming operations dimensions and surface finish of the products are of utmost importance. Forming basically includes three parts – forming conditions excluded – that may be changed; work material, tool and (possibly) lubricant. In the interface between work material and tool, the conditions are very aggressive with – generally or locally – high temperatures and pressures. The surfaces will be worn in various ways and this will change the conditions in the process. Consequently, the surface finish as well as the dimensions of the formed product may change and in the end, the product will not fulfil the requirements of the customer. Therefore, research and development in regard to wear, and consequently tribology, of the forming tools is of great interest. The investigations of wire drawing dies focus on coating adhesion/cohesion, surface characteristics and material transfer onto the coated steel both in laboratory scale as well as in the wire drawing process. Results show that it in wire drawing is possible to enhance the tribological performance of drawing dies by using a lubricant together with a steel substrate coated by a polished, dual-layer coating containing both hard and friction-lowering layers. The investigations of hot rolling work rolls focus on microstructure and hardness as well as cracking- and surface characteristics in both laboratory scale and in the hot strip mill. Results show that an ideal hot work roll material should be made up of a matrix with high hardness and a large amount of complex, hard carbides evenly distributed in the microstructure. The surface failure mechanisms of work rolls are very complex involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. This knowledge may be used to develop new tools with higher wear resistance giving better performance, lower costs and lower environmental impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment.  In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties.  Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing energy use has caused many environmental problems including global warming. Energy use is growing rapidly in developing countries and surprisingly a remarkable portion of it is associated with consumed energy to keep the temperature comfortable inside the buildings. Therefore, identifying renewable technologies for cooling and heating is essential. This study introduced applications of steel sheets integrated into the buildings to save energy based on existing technologies. In addition, the proposed application was found to have a considerable chance of market success. Also, satisfying energy needs for space heating and cooling in a single room by using one of the selected applications in different Köppen climate classes was investigated to estimate which climates have a proper potential for benefiting from the application. This study included three independent parts and the results related to each part have been used in the next part. The first part recognizes six different technologies through literature review including Cool Roof, Solar Chimney, Steel Cladding of Building, Night Radiative Cooling, Elastomer Metal Absorber, and Solar Distillation. The second part evaluated the application of different technologies by gathering the experts’ ideas via performing a Delphi method. The results showed that the Solar Chimney has a proper chance for the market. The third part simulated both a solar chimney and a solar chimney with evaporation which were connected to a single well insulated room with a considerable thermal mass. The combination was simulated as a system to estimate the possibility of satisfying cooling needs and heating needs in different climate classes. A Trombe-wall was selected as a sample design for the Solar Chimney and was simulated in different climates. The results implied that the solar chimney had the capability of reducing the cooling needs more than 25% in all of the studied locations and 100% in some locations with dry or temperate climate such as Mashhad, Madrid, and Istanbul. It was also observed that the heating needs were satisfied more than 50% in all of the studied locations, even for the continental climate such as Stockholm and 100% in most locations with a dry climate. Therefore, the Solar Chimney reduces energy use, saves environment resources, and it is a cost effective application. Furthermore, it saves the equipment costs in many locations. All the results mentioned above make the solar chimney a very practical and attractive tool for a wide range of climates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work is reported, in a first step, the effect of different experimental parameters and their relation with polymer properties using the homogeneous binary catalyst system composed by Ni(α-diimine)Cl2 (α-diimine = 1,4-bis(2,6-diisopropylphenyl)- acenaphthenediimine) and {TpMs*}V(Ntbu)Cl2 (TpMs* = hydridobis(3-mesitylpyrazol-1- yl)(5-mesitylpyrazol-1-yl)) activated with MAO. This complexes combination produces, in a single reactor, polyethylene blends with different and controlled properties dependent on the polymerization temperature, solvent and Nickel molar fraction (xNi). In second, the control of linear low density polyethylene (LLDPE) production was possible, using a combination of catalyst precursors {TpMs}NiCl (TpMs = hydridotris(3- mesitylpyrazol-1-yl)) and Cp2ZrCl2, activated with MAO/TMA, as Tandem catalytic system. The catalytic activities as well as the polymer properties are dependent on xNi. Polyethylene with different Mw and controlled branches is produced only with ethylene monomer. Last, the application group 3 metals catalysts based, M(allyl)2Cl(MgCl2)2.4THF (M = Nd, La and Y), in isoprene polymerization with different cocatalysts systems and experimental parameters is reported. High yields and polyisoprene with good and controlled properties were produced. The metal center, cocatalysts and the experimental parameters are determinant for the polymers properties and their control. High conversions in cis-1,4- or trans-1,4-polyisoprene were obtained and the polymer microstructure depending of cocatalyst and metal type. Combinations of Y and La precursors were effective systems for the cis/transpolyisoprene blends production, and the control of cis-trans-1,4-microstructures by Yttrium molar fraction (xY) variation was possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work focuses on the creation and applications of a dynamic simulation software in order to study the hard metal structure (WC-Co). The technological ground used to increase the GPU hardware capacity was Geforce 9600 GT along with the PhysX chip created to make games more realistic. The software simulates the three-dimensional carbide structure to the shape of a cubic box where tungsten carbide (WC) are modeled as triangular prisms and truncated triangular prisms. The program was proven effective regarding checking testes, ranging from calculations of parameter measures such as the capacity to increase the number of particles simulated dynamically. It was possible to make an investigation of both the mean parameters and distributions stereological parameters used to characterize the carbide structure through cutting plans. Grounded on the cutting plans concerning the analyzed structures, we have investigated the linear intercepts, the intercepts to the area, and the perimeter section of the intercepted grains as well as the binder phase to the structure by calculating the mean value and distribution of the free path. As literature shows almost consensually that the distribution of the linear intercepts is lognormal, this suggests that the grain distribution is also lognormal. Thus, a routine was developed regarding the program which made possible a more detailed research on this issue. We have observed that it is possible, under certain values for the parameters which define the shape and size of the Prismatic grain to find out the distribution to the linear intercepts that approach the lognormal shape. Regarding a number of developed simulations, we have observed that the distribution curves of the linear and area intercepts as well as the perimeter section are consistent with studies on static computer simulation to these parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal/ceramic interfaces using zirconia have dominated the industrial applications in the last decade, due to the high mechanical strength and fracture toughness of zirconia, especially at temperatures below 300 ºC. Also noteworthy is the good ionic conductivity in high temperatures of this component. In this work joining between ZrO2 Y-TZP and ZrO2 Mg-PSZ with austenitic stainless steel was studied. These joints were brazed at high-vacuum after mechanical metallization with Ti using filler alloys composed by Ag-Cu and Ag-Cu-Ni. The influence of the metallization, and the affinity between the different groups (ceramic / filler alloys) was evaluated, in order to achieve strong metal/ceramic joints. Evaluation of joints and interfaces, also the characterization of base materials was implemented using various techniques, such as: x-ray diffraction, leak test, three-point flexural test and scanning electron microscopy with chemical analysis. The microstructural analysis revealed physical and chemical bonds in the metal/ceramic interfaces, providing superior leak proof joints and stress cracking, in order to a good joint in all brazed samples. Precipitation zones and reaction layers with eutetic characteristics were observed between the steel and the filler metal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the results, analyses and conclusions about a study carried out with objective of minimizing the thermal cracks formation on cemented carbide inserts during face milling. The main focus of investigation was based on the observation that milling process is an interrupted machining process, which imposes cyclic thermal loads to the cutting tool, causing frequent stresses changes in its superficial and sub-superficial layers. These characteristics cause the formation of perpendicular cracks from cutting edge which aid the cutting tool wear, reducing its life. Several works on this subject emphasizing the thermal cyclic behavior imposed by the milling process as the main responsible for thermal cracks formation have been published. In these cases, the phenomenon appears as a consequence of the difference in temperature experienced by the cutting tool with each rotation of the cutter, usually defined as the difference between the temperatures in the cutting tool wedge at the end of the cutting and idle periods (T factor). Thus, a technique to minimize this cyclic behavior with objective of transforming the milling in an almost-continuous process in terms of temperature was proposed. In this case, a hot air stream was applied into the idle period, during the machining process. This procedure aimed to minimize the T factor. This technique was applied using three values of temperature from the hot air stream (100, 350 e 580 oC) with no cutting fluid (dry condition) and with cutting fluid mist (wet condition) using the hot air stream at 580oC. Besides, trials at room temperature were carried out. Afterwards the inserts were analyzed using a scanning electron microscope, where the quantity of thermal cracks generated in each condition, the wear and others damages was analyzed. In a general way, it was found that the heating of the idle period was positive for reducing the number of thermal cracks during face milling with cemented carbide inserts. Further, the cutting fluid mist application was effective in reducing the wear of the cutting tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous fiber/metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent fatigue endurance and low density. Glass fibers/epoxy laminae and aluminum foil (Glare) are commonly used to obtain these hybrid composites. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. Usually, epoxy resins absorb moisture when exposed to humid environments and metals are prone to surface corrosion. Therefore, the combination of the two materials in Glare (polymeric composite and metal). can lead to differences that often turn out to be beneficial in terms of mechanical properties and resistance to environmental influences. In this work. The viscoelastic properties. such as storage modulus (E') and loss modulus (E'), were obtained for glass fiber/epoxy composite, aluminum 2024-T3 alloy and for a glass fiber/epoxy/aluminum laminate (Glare). It was found that the glass fiber/epoxy (G/E) composites decrease the E' modulus during hygrothermal conditioning up to saturation point (6 weeks). However, for Glare laminates the E' modulus remains unchanged (49GPa) during the cycle of hygrothermal conditioning. The outer aluminum sheets in the Glare laminate shield the G/E composite laminae from moisture absorption. which in turn prevent, in a certain extent, the material from hygrothermal degradation effects. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent mechanical characteristics and relatively low density. Non-destructive testing techniques are being used in the characterization of composite materials. Among these, vibration testing is one of the most used tools because it allows the determination of the mechanical properties. In this work, the viscoelastic properties such as elastic (E') and viscous (E) responses were obtained for aluminum 2024 alloy; carbon fiber/epoxy; glass fiber/epoxy and their hybrids aluminum 2024 alloy/carbon fiber/epoxy and aluminum 2024 alloy/glass fiber/epoxy composites. The experimental results were compared to calculated E modulus values by using the composite micromechanics approach. For all specimens studied, the experimental values showed good agreement with the theoretical values. The damping behavior, i.e. The storage modulus and the loss factor, from the aluminum 2024 alloy and fiber epoxy composites can be used to estimate the viscoelastic response of the hybrid FML. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal in this work is to conduct a quantitative analysis of the mechanical stir casting process for obtaining particulate metal matrix composites. A combined route of stirring at semi-solid state followed by stirring at liquid state is proposed. A fractional factorial design was developed to investigate the influence and interactions of factors as: time, rotation, initial fraction and particle size, on the incorporated fraction. The best incorporations were obtained with all factors at high levels, as well as that very long stirring periods have no strong influence being particle size and rotation the most important factors on the incorporated fraction. Particle wetting occurs during stirring at semisolid state, highlighting the importance of the interactions between particles and the alloy globularized phase. The role of the alloying element Mg as a wettability-promoting agent is discussed. The shear forces resulting from the stirring system is emphasized and understood as the effect of rotation itself added to the propeller blade geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work involved the development and application of a new analytical procedure for in-situ characterization of the lability of metal species in aquatic systems by using a system equipped with a diffusion membrane and cellulose organomodified with p-aminobenzoic acid groups (DM-Cell-PAB). To this end, the DM-Cell-PAB system was prepared by adding cellulose organomodified with p-aminobenzoic acid groups (Cell-PAB) to pre-purified cellulose bags. After the DM-Cell-PAB system was sealed, it was examined in the laboratory. The in-situ application involved immersing the DM-Cell-PAB system in two different rivers, enabling us to study the relative lability of metal species (Cu, Cd, Fe, Mn, and Ni) as a function of time and quantity of exchanger. The procedure is simple and opens up a new perspective for understanding environmental phenomena relating to the complexation, transport, stability, and lability of metal species in aquatic systems rich in organic matter.