957 resultados para segment QT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural cell adhesion molecule (N-CAM) is expressed on the surface of astrocytes, where its homophilic binding leads to the activation of the transcription factor NF-κB. Transfection of astrocytes with a construct encompassing the transmembrane region and the cytoplasmic domain of N-CAM (designated Tm-Cyto, amino acids 685–839 in the full-length molecule) inhibited this activation up to 40%, and inhibited N-CAM-induced translocation of NF-κB to the nucleus. N-CAM also activated NF-κB in astrocytes from N-CAM knockout mice, presumably through binding to a heterophile. This activation, however, was not blocked by Tm-Cyto expression, indicating that the inhibitory effect of the Tm-Cyto construct is specific for cell surface N-CAM. Deletions and point mutations of the cytoplasmic portion of the Tm-Cyto construct indicated that the region between amino acids 780 and 800 were essential for inhibitory activity. This region contains four threonines (788, 793, 794, and 797). Mutation to alanine of T788, T794, or T797, but not T793, abolished inhibitory activity, as did mutation of T788 or T797 to aspartic acid. A Tm-Cyto construct with T794 mutated to aspartic acid retained inhibitory activity but did not itself induce a constitutive NF-κB response. This result suggests that phosphorylation of T794 may be necessary but is not the triggering event. Overall, these findings define a short segment of the N-CAM cytoplasmic domain that is critical for N-CAM-induced activation of NF-κB and may be important in other N-CAM-mediated signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synovial membrane (SM) of affected joints in ankylosing spondylitis (AS) is infiltrated by germinal center-like aggregates (foci) of lymphocytes similar to rheumatoid arthritis (RA). We characterized the rearranged heavy chain variable segment (VH) genes in the SM for gene usage and the mutational pattern to elucidate the B lymphocyte involvement in AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reovirus genome segment S1 encodes protein σ1, which is the receptor binding protein, modulates tissue tropism, and specifies the nature of the antiviral immune response. It makes up less than 2% of reovirus particles and is synthesized in very small amounts in infected cells. Any antiviral strategy aimed at reducing specifically the expression of this genome segment should, in principle, reduce the infectivity of the virus. To test this hypothesis, we have assembled two hammer-head motif-containing ribozymes (Rzs) targeted to cleave at the conserved B and C domains of the reovirus s1 RNA. Protein-independent but Mg2+-dependent sequence-specific cleavage of s1 RNA was achieved by both the Rzs in trans. Cells that transiently express these Rzs, when challenged with reovirus, were protected against the cytopathic effects caused by the virus. This protection correlated with the specific intracellular reduction of s1 transcripts that was due to their cleavage by the Rzs. Rz-treated cells that were challenged with reovirus showed almost complete disappearance of protein σ1 without significantly altering the levels of the other reovirus structural proteins. Thus, Rzs, besides acting as antiviral agents, could be exploited as biological tools to delineate specific functions of target genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-type Ca2+ channels can be inhibited by neurotransmitter-induced release of G protein βγ subunits. Two isoforms of Cav2.2 α1 subunits of N-type calcium channels from rat brain (Cav2.2a and Cav2.2b; initially termed rbB-I and rbB-II) have different functional properties. Unmodulated Cav2.2b channels are in an easily activated “willing” (W) state with fast activation kinetics and no prepulse facilitation. Activating G proteins shifts Cav2.2b channels to a difficult to activate “reluctant” (R) state with slow activation kinetics; they can be returned to the W state by strong depolarization resulting in prepulse facilitation. This contrasts with Cav2.2a channels, which are tonically in the R state and exhibit strong prepulse facilitation. Activating or inhibiting G proteins has no effect. Thus, the R state of Cav2.2a and its reversal by prepulse facilitation are intrinsic to the channel and independent of G protein modulation. Mutating G177 in segment IS3 of Cav2.2b to E as in Cav2.2a converts Cav2.2b tonically to the R state, insensitive to further G protein modulation. The converse substitution in Cav2.2a, E177G, converts it to the W state and restores G protein modulation. We propose that negatively charged E177 in IS3 interacts with a positive charge in the IS4 voltage sensor when the channel is closed and produces the R state of Cav2.2a by a voltage sensor-trapping mechanism. G protein βγ subunits may produce reluctant channels by a similar molecular mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48–72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, IKr, of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed IKr without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, IKs, without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed IKs and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltage-dependent K+ channel responsible for the slowly activating delayed K+ current IKs is composed of pore-forming KCNQ1 and regulatory KCNE1 subunits, which are mutated in familial forms of cardiac long QT syndrome. Because KCNQ1 and KCNE1 genes also are expressed in epithelial tissues, such as the kidneys and the intestine, we have investigated the adaptation of KCNE1-deficient mice to different K+ and Na+ intakes. On a normal K+ diet, homozygous kcne1−/− mice exhibit signs of chronic volume depletion associated with fecal Na+ and K+ wasting and have lower plasma K+ concentration and higher levels of aldosterone than wild-type mice. Although plasma aldosterone can be suppressed by low K+ diets or stimulated by low Na+ diets, a high K+ diet provokes a tremendous increase of plasma aldosterone levels in kcne1−/− mice as compared with wild-type mice (7.1-fold vs. 1.8-fold) despite lower plasma K+ in kcne1−/− mice. This exacerbated aldosterone production in kcne1−/− mice is accompanied by an abnormally high plasma renin concentration, which could partly explain the hyperaldosteronism. In addition, we found that KCNE1 and KCNQ1 mRNAs are expressed in the zona glomerulosa of adrenal glands where IKs may directly participate in the control of aldosterone production by plasma K+. These results, which show that KCNE1 and IKs are involved in K+ homeostasis, might have important implications for patients with IKs-related long QT syndrome, because hypokalemia is a well known risk factor for the occurrence of torsades de pointes ventricular arrhythmia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new way to think about, and to construct, pairwise as well as multiple alignments of DNA and protein sequences is proposed. Rather than forcing alignments to either align single residues or to introduce gaps by defining an alignment as a path running right from the source up to the sink in the associated dot-matrix diagram, we propose to consider alignments as consistent equivalence relations defined on the set of all positions occurring in all sequences under consideration. We also propose constructing alignments from whole segments exhibiting highly significant overall similarity rather than by aligning individual residues. Consequently, we present an alignment algorithm that (i) is based on segment-to-segment comparison instead of the commonly used residue-to-residue comparison and which (ii) avoids the well-known difficulties concerning the choice of appropriate gap penalties: gaps are not treated explicity, but remain as those parts of the sequences that do not belong to any of the aligned segments. Finally, we discuss the application of our algorithm to two test examples and compare it with commonly used alignment methods. As a first example, we aligned a set of 11 DNA sequences coding for functional helix-loop-helix proteins. Though the sequences show only low overall similarity, our program correctly aligned all of the 11 functional sites, which was a unique result among the methods tested. As a by-product, the reading frames of the sequences were identified. Next, we aligned a set of ribonuclease H proteins and compared our results with alignments produced by other programs as reported by McClure et al. [McClure, M. A., Vasi, T. K. & Fitch, W. M. (1994) Mol. Biol. Evol. 11, 571-592]. Our program was one of the best scoring programs. However, in contrast to other methods, our protein alignments are independent of user-defined parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X chromosome linkage group is conserved in placental mammals. However, X chromosome morphological differences, due to internal chromosome rearrangements, exist among mammalian species. We have developed bovine chromosome painting probes for Xp and Xq to assess segment homologies between the submetacentric bovine X chromosome and the acrocentric sheep and goat X chromosomes. These painting probes and their corresponding DNA libraries were developed by chromosome micromanipulation, DNA micropurification, microcloning, and PCR amplification. The bovine Xp painting probe identified an interstitially located homologous segment in the sheep and goat Xq region, most probably resulting from chromosome inversion. Ten type II (microsatellite) markers obtained from the bovine Xq library and five other X chromosome assigned, but unlinked, markers were used to generate a linkage map for Xq spanning 89.4 centimorgans. The chromosome painting probes and molecular markers generated in this study would be useful for comparative mapping and tracing of internal X chromosome rearrangements in all ruminant species and would contribute to the understanding of mammalian sex chromosome evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liddle syndrome is a mendelian form of hypertension characterized by constitutively elevated renal Na reabsorption that can result from activating mutations in the beta or gamma subunit of the epithelial Na channel. All reported mutations have deleted the last 45-76 normal amino acids from the cytoplasmic C terminus of one of these channel subunits. While these findings implicate these terminal segments in the normal negative regulation of channel activity, they do not identify the amino acid residues that are critical targets for these mutations. Potential targets include the short highly conserved Pro-rich segments present in the C terminus of beta and gamma subunits; these segments are similar to SH3-binding domains that mediate protein-protein interaction. We now report a kindred with Liddle syndrome in which affected patients have a mutation in codon 616 of the beta subunit resulting in substitution of a Leu for one of these highly conserved Pro residues. The functional significance of this mutation is demonstrated both by the finding that this is a de novo mutation appearing concordantly with the appearance of Liddle syndrome in the kindred and also by the marked activation of amiloride-sensitive Na channel activity seen in Xenopus oocytes expressing channels containing this mutant subunit (8.8-fold increase compared with control oocytes expressing normal channel subunits; P = 0.003). These findings demonstrate a de novo missense mutation causing Liddle syndrome and identify a critical channel residue important for the normal regulation of Na reabsorption in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invariant chain (Ii), a membrane glycoprotein, binds class II major histocompatibility complex (MHC) glycoproteins, probably via its class II-associated Ii peptide (CLIP) segment, and escorts them toward antigen-containing endosomal compartments. We find that a soluble, trimeric ectodomain of Ii expressed and purified from Escherichia coli blocks peptide binding to soluble HLA-DR1. Proteolysis indicates that Ii contains two structural domains. The C-terminal two-thirds forms an alpha-helical domain that trimerizes and interacts with empty HLA-DR1 molecules, augmenting rather than blocking peptide binding. The N-terminal one-third, which inhibits peptide binding, is proteolytically susceptible over its entire length. In the trimer, the N-terminal domains act independently with each CLIP segment exposed and free to bind an MHC class II molecule, while the C-terminal domains act as a trimeric unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies to date have identified only a few proteins that are expressed in a segment-specific manner within the mammalian brain. Here we report that a nonreceptor protein tyrosine phosphatase, PTPH1, is selectively expressed in the adult thalamus. Expression of PTPH1 mRNA is detected in most, but not all, thalamic nuclei. Nuclei that are derived embryonically from the dorsal thalamus and project to the neocortex express this gene, whereas those derived from the ventral thalamus do not. PTPH1 mRNA expression is also restricted to the dorsal thalamus during development and, thus, can serve as a specific marker for the dorsal thalamic nuclei. Since the subcellular localization of PTPH1 protein is not known, its functional role is not clear. However, the restriction of its expression to the thalamic nuclei that have thalamocortical connections suggests that PTPH1 may play a role in the maintenance of these connections or in determining the physiological properties of thalamic relay nuclei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron microscopic visualization indicates that the transcription activator NRI (NTRC) binds with exceptional selectivity and efficiency to a sequence-induced superhelical (spiral) segment inserted upstream of the glnA promoter, accounting for its observed ability to substitute for the natural glnA enhancer. The cooperative binding of NRI to the spiral insert leads to protein oligomerization which, at higher concentration, promotes selective coating of the entire superhelical segment with protein. Localization of NRI at apical loops is observed with negatively supercoiled plasmid DNA. With a linear plasmid, bending of DNA is observed. We confirm that NRI is a DNA-bending protein, consistent with its high affinity for spiral DNA. These results prove that spiral DNA without any homology to the NRI-binding sequence site can substitute for the glnA enhancer by promoting cooperative activator binding to DNA and facilitating protein oligomerization. Similar mechanisms might apply to other prokaryotic and eukaryotic activator proteins that share the ability to bend DNA and act efficiently as multimers.