971 resultados para secondary structure detection


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The enzymatic cleavage of a peptide amphiphile (PA) is investigated. The self-assembly of the cleaved products is distinct from that of the PA substrate. The PA C16-KKFFVLK is cleaved by α-chymotrypsin at two sites leading to products C16-KKF with FVLK and C16-KKFF with VLK. The PA C16-KKFFVLK forms nanotubes and helical ribbons at room temperature. Both PAs C16-KKF and C16-KKFF corresponding to cleavage products instead self-assemble into 5-6 nm diameter spherical micelles, while peptides FVLK and VLK do not adopt well-defined aggregate structures. The secondary structures of the PAs and peptides are examined by FTIR and circular dichroism spectroscopy and X-ray diffraction. Only C16-KKFFVLK shows substantial β-sheet secondary structure, consistent with its self-assembly into extended aggregates, based on PA layers containing hydrogen-bonded peptide headgroups. This PA also exhibits a thermoreversible transition to twisted tapes on heating.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers’ disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly “nanodisc” structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/ Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present findings suggest that Anopheles (Kerteszia) homunculus may comprise more than one species. The rDNA ITS2 sequence data corroborate the presence of An. homunculus l.s. in Mata Atlantica, southern Brazil, and suggest that specimens from Trinidad may belong to an unnamed morphologically similar species. There is a need for additional studies to establish the geographical distribution of An. homunculus l.s. in continental South America and in Trinidad, especially in southern Mata Atlantica, Brazil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Human Respiratory Syncytial Virus (HRSV) fusion protein (F) was expressed in Escherichia call BL21A using the pET28a vector at 37 degrees C. The protein was purified from the soluble fraction using affinity resin. The structural quality of the recombinant fusion protein and the estimation of its secondary structure were obtained by circular dichroism. Structural models of the fusion protein presented 46% of the helices in agreement with the spectra by circular dichroism analysis. There are only few studies that succeeded in expressing the HRSV fusion protein in bacteria. This is a report on human fusion protein expression in E. call and structure analysis, representing a step forward in the development of fusion protein F inhibitors and the production of antibodies. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide`s primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen`s secondary structure is affected by all three studied surfactants (decrease in alpha-helix and an increase in beta-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 mu M is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphoribosyl pyrophosphate synthetase (PRS-EC:2.7.6.1) is an important enzyme present in several metabolic pathways, thus forming a complex family of isoenzymes. However, plant PRS enzymes have not been extensively investigated. In this study, a sugarcane prs gene has been characterized from the Sugar Cane Expressed Sequence Tag Genome Project. This gene contains a 984-bp open reading frame encoding a 328-amino acid protein. The predicted amino acid sequence has 77% and 78% amino acid sequence identity to Arabidopsis thaliana and Spinacia oleracea PRS4, respectively. The assignment of sugarcane PRS as a phosphate-independent PRS isoenzyme (Class II PRS) is verified following enzyme assay and phylogenetic reconstruction of PRS homologues. To gain further insight into the structural framework of the phosphate independence of sugarcane PRS, a molecular model is described. This model reveals the formation of two conserved domains elucidating the structural features involved in sugarcane PRS phosphate independence. The recombinant PRS retains secondary structure elements and a quaternary arrangement consistent with known PRS homologues, based on circular dichroism measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SBTX, a novel toxin from soybean, was purified by ammonium sulfate fractionation followed by chromatographic steps DEAE-Cellulose, CM-Sepharose and Superdex 200 HR fast-protein liquid chromatography (FPLC). Lethality of SBTX to mice (LD50 5.6 mg/kg) was used as parameter in the purification steps. SBTX is a 44-kDa basic glycoprotein composed of two polypeptide chains (27 and 17 kDa) linked by a disulfide bond. The N-terminal sequences of the 44 and 27 kDa chains were identical (ADPTFGFTPLGLSEKANLQIMKAYD), differing from that of 17 kDa (PNPKVFFDMTIGGQSAGRIVMEEYA). SBTX contains high levels of Glx, Ala, Asx, Gly and Lys and showed maximum absorption at 280 nm, epsilon(1 cm) (1%) of 6.3, and fluorescence emission in the 290-450nm range upon excitation at 280nm. The secondary structure content was 35% alpha-helix, 13% beta-strand and beta-sheet, 27% beta-turn, 25% unordered, and 1% aromatic residues. Immunological assays showed that SBTX was related to other toxic proteins, such as soyatoxin and canatoxin, and cross-reacted weekly with soybean trypsin inhibitor and agglutinin, but it was devoid of protease-inhibitory and hemagglutinating activities. The inhibitory effect of SBTX on growth of Cercospora sojina, fungus causing frogeye leaf spot in soybeans, was observed at 50 mu g/ml, concentration 112 times lesser than that found to be lethal to mice. This effect on phytopathogenic fungus is a potential attribute for the development of transgenic plants with enhanced resistance to pathogens. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pi of 5.23. As confirmed by small-angle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed alpha-helices and beta-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of 50 degrees C with specific activities against Avicel and p-nitrophenyl-beta-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics Simulations of the TR alpha and TR beta LBDs in the absence and in the presence of the natural ligand Triac. The Simulations Show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary Structure elements, while the Structure remains essentially compact, resembling a molten globule state. This differs From most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TR alpha and TR beta Subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our Simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H 11, and the interaction of the region between H I and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hepatitis C virus (HCV), exhibits considerable genetic diversity, but presents a relatively well conserved 5 ` noncoding region (5 ` NCR) among all genotypes. In this study, the structural features and translational efficiency of the HCV 5 ` NCR sequences were analyzed using the programs RNAfold, RNAshapes and RNApdist and with a bicistronic dual luciferase expression system, respectively. RNA structure prediction software indicated that base substitutions will alter potentially the 5 ` NCR structure. The heterogeneous sequence observed on 5 ` NCR led to important changes in their translation efficiency in different cell culture lines. Interactions of the viral RNA with cellular transacting factors may vary according to the cell type and viral genome polymorphisms that may result in the translational efficiency observed. J. Med. Virol. 81: 1212-1219, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental evidence shows that the mechanism of pore formation by actinoporins is a multistep process, involving binding of the water-soluble monomer to the membrane and subsequent oligomerization on the membrane surface, leading to the formation of a functional pore. However, as for other eukaryotic pore-forming toxins, the molecular details of the mechanism of membrane insertion and oligomerization are not clear. In order to obtain further insight with regard to the structure-function relationship in sticholysins, we designed and produced three cysteine mutants of recombinant sticholysin I (rStI) in relevant functional regions for membrane interaction: StI E2C and StI F15C (in the N-terminal region) and StI R52C (in the membrane binding site). The conformational characterization derived from fluorescence and CD spectroscopic studies of StI E2C, StI F15C and StI R52C suggests that replacement of these residues by Cys in rStI did not noticeably change the conformation of the protein. The substitution by Cys of Arg(52) in the phosphocholine-binding site, provoked noticeable changes in rStI permeabilizing activity; however, the substitutions in the N-terminal region (Glu(2), Phe(15)) did not modify the toxin`s permeabilizing ability. The presence of a dimerized population stabilized by a disulfide bond in the StI E2C mutant showed higher pore-forming activity than when the protein is in the monomeric state, suggesting that sticholysins pre-ensembled at the N-terminal region could facilitate pore formation. (C) 2011 Elsevier Ltd. All rights reserved.