989 resultados para sea surface temperature anomaly (SSTA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Subtropical Front (STF) marking the northern boundary of the Southern Ocean has a steep gradient in sea surface temperature (SST) of approximately 4°C over 0.5° of latitude. Presently, in the region south of Tasmania, the STF lies nominally at 47°S in the summer and 45°S in the winter. We present here SST reconstructions in a latitudinal transect of cores across the South Tasman Rise, southeast of Australia, during the late Quaternary. SST reconstructions are based on two paleotemperature proxies, alkenones and faunal assemblages, which are used to assess past changes in SST in spring and summer. The north-south alignment in core locations allows reconstruction of movement of the STF over the last 100 ka. Surface water temperatures during the last glaciation in this region were ~4°C colder than today. Additional temperature changes greater in magnitude than 4°C seen in individual cores can be attributed to changes in the water mass overlying the core site caused by the movement of the front across that location. During the penultimate interglacial, SST was ~2°C warmer and the STF was largely positioned south of 47°S. Movement of the STF to the north occurred during cool climate periods such as the last marine isotope stages 3 and 4. In the last glaciation, the front was at its farthest north position, becoming pinned against the Tasmanian landmass. It moved south by 4° latitude to 47°S in summer during the deglaciation but remained north of 45°S in spring throughout the early deglaciation. After 11 ka B.P. inferred invigoration of the East Australia Current appears to have pushed the STF seasonally south of the East Tasman Plateau, until after 6 ka B.P. when it achieved its present configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present two ~270 kyr paleo-sea surface temperature (SST) records from the Equatorial Divergence and the South Equatorial Current derived from Mg/Ca ratios in the planktic foraminifer Globigerinoides sacculifer. The present study suggests that the magnesium signature of G. sacculifer provides a seasonal SST estimate from the upper ~50 m of the water column generated during upwelling in austral low-latitude fall/winter. Common to both down-core records is a glacial-interglacial amplitude of ~3°-3.5°C for the last climatic changes and lower Holocene and glacial oxygen isotope stage 2 temperatures compared with interglacial stage 5.5 and glacial stage 6 temperatures, respectively. The comparison to published SST estimates from alkenones, oxygen isotopes, and foraminiferal transfer function from the same core material pinpoints discrepancies and conformities between methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holocene climate variability is investigated in the North Pacific and North Atlantic realms, using alkenone-derived sea-surface temperature (SST) records as well as a millennial scale simulation with a coupled atmosphere-ocean general circulation model (AOGCM). The alkenone SST data indicate a temperature increase over almost the entire North Pacific from 7 cal kyr BP to the present. A dipole pattern with a continuous cooling in the northeastern Atlantic and a warming in the eastern Mediterranean Sea and the northern Red Sea is detected in the North Atlantic realm. Similarly, SST variations are opposite in sign between the northeastern Pacific and the northeastern Atlantic. A 2300 year long AOGCM climate simulation reveals a similar SST seesaw between the northeastern Pacific and the northeastern Atlantic on centennial time scales. Our analysis of the alkenone SST data and the model results suggests fundamental inter-oceanic teleconnections during the Holocene.