714 resultados para screw
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Na presente dissertação é proposto o desenvolvimento de um novo sistema de calibração de roscados de exteriores através de visão computacional. A calibração de roscados de exterior consiste na obtenção do diâmetro efectivo, do diâmetro exterior e do passo, e no cálculo da incerteza expandida correspondente. Actualmente, a calibração é efectuada com o auxílio de máquinas universais (SIP), na qual o diâmetro efectivo é obtido através de um modelo matemático, pois não se consegue obtê-lo directamente. O sistema de calibração por visão computacional tem como objectivo obter-se o diâmetro efectivo directamente, assim como as restantes características. A vantagem deste novo sistema será para roscados com dimensões inferiores a 2 mm, que não se conseguem medir utilizando a SIP. A desvantagem é referente a diâmetros superiores a 2 mm, devido à resolução obtida com a câmara utilizada. Este sistema foi validado por comparação com a calibração utilizando como equipamento calibrador a SIP. Ao longo da dissertação irão ser explicados todos os passos dados para a calibração de roscados de exterior.
Resumo:
The Steel Company of Canada (Stelco) was formed in 1910 with the incorporation of the Canada Screw Co. Ltd., the Montreal Rolling Mills Co., the Dominion Wire Manufacturing Co. Ltd., the Hamilton Steel and Iron Co. Ltd., and the Canada Bolt and Nut Co. Ltd. By the 1920s, the company was the largest producer of steel ingots in Canada. The 1930s saw continued success and expansion of the company as Stelco increased its iron and steel capacity by 50 percent. The company continued to prosper throughout the next several decades, with sales revenues exceeding one billion dollars in 1974. In 1980, the company officially changed its name to Stelco, in order to simplify its name in both the French and English language. The company began to experience financial difficulties beginning with the recession in 1982. The troubles persisted for the next 25 years as a result of a decreased demand for steel, labour disputes, and high steel imports. In 2004, Stelco entered bankruptcy protection. By 2007, Stelco had lost $240 million in its first four quarters after emerging from bankruptcy protection. That same year Stelco was purchased by the United States Steel Corp. Despite efforts to restructure the company, bankruptcy was again declared in 2014.
Resumo:
A "Navy League, Keep Watch" pin with a screw-on backing.
Resumo:
This is a 16 cm x 8 cm 19th century pewter flask which has 3 pieces including the flask, the screw-on cap and a cover/drinking cup. There is a W inscribed within the cap. This is well-worn and dented.
Resumo:
Introduction : L’expansion palatine rapide assistée chirurgicalement (EPRAC) est une option de traitement privilégiée chez les patients ayant atteint la maturité squelettique et présentant une déficience transverse du maxillaire. L’effet bénéfique de l’EPRAC sur la fonction respiratoire est régulièrement mentionné, toutefois, encore peu d’études ont évalué son impact sur les voies aériennes supérieures. L’objectif de cette étude clinique prospective comparative consistait à évaluer les effets tridimensionnels de l’EPRAC sur la cavité nasale, le nasopharynx et l’oropharynx à l’aide de la tomodensitométrie. Méthodologie : L’échantillon était constitué de 14 patients (5 hommes, 9 femmes) dont l’âge moyen était de 23,0 ± 1,9 ans (16 ans 4 mois à 39 ans 7 mois). Tous ont été traités avec un appareil d’expansion de type Hyrax collé et l’expansion moyenne a été de 9,82 mm (7,5 - 12,0 mm). Tous ont eu une période de contention d’une année avant le début de tout autre traitement orthodontique. Une évaluation par tomodensitométrie volumique à faisceau conique a été réalisée aux temps T0 (initial), T1 (6 mois post-expansion) et T2 (1an post-expansion) et le volume des fosses nasales, du nasopharynx et de l’oropharynx ainsi que les dimensions de la zone de constriction maximale de l’oropharynx ont été mesurés sur les volumes tridimensionnels obtenus. Résultats : Les résultats radiologiques ont démontré une augmentation significative du volume des fosses nasales et du nasopharynx ainsi qu’une augmentation de la zone de constriction maximale de l’oropharynx à 6 mois post-expansion. Par la suite, une portion du gain enregistré pour ces trois paramètres était perdue à un an post-EPRAC sans toutefois retourner aux valeurs initiales. Aucun effet significatif sur le volume de l’oropharynx n’a été observé. De plus, aucune corrélation significative entre la quantité d’expansion réalisée et l’ensemble des données radiologiques n’a été observée. L’analyse de la corrélation intra-classe a démontré une excellente fiabilité intra-examinateur. Conclusions : L’EPRAC entraîne un changement significatif du volume de la cavité nasale et du nasopharynx. L’EPRAC ne modifie pas le volume de l’oropharynx, par contre, un effet significatif sur la zone de constriction maximale de l’oropharynx est noté. Les effets observés n’ont pas de corrélation avec le montant d’activation de la vis d’expansion.
Resumo:
Gum and filled compounds of styrene-butadiene rubber are extruded through a laboratory extruder by varying the feeding rase at different temperatures and screw speed (rpm). The extruded compounds are vulcanized up4o their optimum cure times and the mechanical properties of the vulcanizates are determined. From the properties data obtained it Is concluded that there is a specific feeding rate wit in the starved fed region, which results In maximum Improved mechanical properties . The enhancement In properties is found to be due to better thermal and shear homogeneity.
Resumo:
Reactive extrusion is an attractive means of polymer processing since the shaping and reaction take place in a single operation. In this paper we report the silane grafting of polyethylenes in a single screw extruder. The optimum conditions for silane grafting, viz. temperature, shear rate, silane and DCP concentrations, were determined on a torque rheometer and then actual extrusion was performed using these conditions. The study shows that an optimum low level of grafting/ crosslinking can be introduced into polyethylene during its extrusion for better mechanical behavior and=or thermal stability without affecting the processability.
Resumo:
The main aim of the study was to optimise the reactive extrusion conditions in the conventional modification processes of polyethylenes in a single screw extruder.The optimum conditions for peroxide crosslinking of low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and their blend were determined in a torque rheometer. The actual reactive extrusion was performed in a laboratory single screw extruder using the optimum parameters. The influence of the coagent, triaUyl cyanurate (TAC), on the cross linking of low density polyethylene in the presence of peroxide was also investigated. The peroxide crosslinking was found to improve the mechanical properties and the thermal stability of the polyethylenes. The efficiency of crosslinking was found to be improved by the addition of coagent such as TAC.The optimum conditions for silane grafting viz temperature, shear rate, silane and DCP concentrations were determined on a torque rheometer in the case of LDPE, LLDPE and their blend. Silane grafting of LDPE in the presence of peroxide was performed with and without addition of water. Compounding of such mixtures in the melt at high temperatures caused decomposition of the peroxide and grafting of alkoxy silyl groups to the polyethylene chains.The optimum parameters for maleic anhydride modification of LDPE, LLDPE and their blend were determined. The grafting reaction was confinned by FTIR spectroscopy. Modification of polyethylenes with maleic anhydride in the presence of dicumyl peroxide was found to be useful in improving mechanical properties. The improvement was found to be mainly due to the grafting of carboxyl group and formation of crosslinks between the chains. The cross linking initiated improvements indicate extended property profiles and new application fields for polyethylenes.On the whole the study shows that the optimum conditions for modifying polyethylenes can be determined on a torque rheometer and actual modification can be performed in a single screw extruder by employing the optimum parameters for improved mechanical! thermal behaviour without seriously affecting their processing behaviour.
Resumo:
Starve feeding of single screw extruder was described as an important means of improving the performance characteristics of the extruder. In addition to such improvement with versatility, the starve feeding technique also may affect the mechanical properties of the extrudate since the heat transfer an(l mixing characteristics in the starve fed and Hood fed extruders are not the same. Since the material is more loosely packed in the channels of the starve fed extruder, there may be greater bed mobility and uniformity. Further, the. thermal an(l shear induced degradation are also less since possibilities of developing local high temperatures are less compared to a densely compacted extruder bed. This study has been undertaken mainly to explore the effect of feeding rate on the mechanical properties of rubber and plastic extrudates since the effect of feeding rate has not been analysed from this angle so far.
Resumo:
Pedicle screw insertion technique has made revolution in the surgical treatment of spinal fractures and spinal disorders. Although X- ray fluoroscopy based navigation is popular, there is risk of prolonged exposure to X- ray radiation. Systems that have lower radiation risk are generally quite expensive. The position and orientation of the drill is clinically very important in pedicle screw fixation. In this paper, the position and orientation of the marker on the drill is determined using pattern recognition based methods, using geometric features, obtained from the input video sequence taken from CCD camera. A search is then performed on the video frames after preprocessing, to obtain the exact position and orientation of the drill. An animated graphics, showing the instantaneous position and orientation of the drill is then overlaid on the processed video for real time drill control and navigation
Resumo:
In this paper the effectiveness of a novel method of computer assisted pedicle screw insertion was studied using testing of hypothesis procedure with a sample size of 48. Pattern recognition based on geometric features of markers on the drill has been performed on real time optical video obtained from orthogonally placed CCD cameras. The study reveals the exactness of the calculated position of the drill using navigation based on CT image of the vertebra and real time optical video of the drill. The significance value is 0.424 at 95% confidence level which indicates good precision with a standard mean error of only 0.00724. The virtual vision method is less hazardous to both patient and the surgeon
Resumo:
A real-time analysis of renewable energy sources, such as arable crops, is of great importance with regard to an optimised process management, since aspects of ecology and biodiversity are considered in crop production in order to provide a sustainable energy supply by biomass. This study was undertaken to explore the potential of spectroscopic measurement procedures for the prediction of potassium (K), chloride (Cl), and phosphate (P), of dry matter (DM) yield, metabolisable energy (ME), ash and crude fibre contents (ash, CF), crude lipid (EE), nitrate free extracts (NfE) as well as of crude protein (CP) and nitrogen (N), respectively in pretreated samples and undisturbed crops. Three experiments were conducted, one in a laboratory using near infrared reflectance spectroscopy (NIRS) and two field spectroscopic experiments. Laboratory NIRS measurements were conducted to evaluate to what extent a prediction of quality parameters is possible examining press cakes characterised by a wide heterogeneity of their parent material. 210 samples were analysed subsequent to a mechanical dehydration using a screw press. Press cakes serve as solid fuel for thermal conversion. Field spectroscopic measurements were carried out with regard to further technical development using different field grown crops. A one year lasting experiment over a binary mixture of grass and red clover examined the impact of different degrees of sky cover on prediction accuracies of distinct plant parameters. Furthermore, an artificial light source was used in order to evaluate to what extent such a light source is able to minimise cloud effects on prediction accuracies. A three years lasting experiment with maize was conducted in order to evaluate the potential of off-nadir measurements inside a canopy to predict different quality parameters in total biomass and DM yield using one sensor for a potential on-the-go application. This approach implements a measurement of the plants in 50 cm segments, since a sensor adjusted sideways is not able to record the entire plant height. Calibration results obtained by nadir top-of-canopy reflectance measurements were compared to calibration results obtained by off-nadir measurements. Results of all experiments approve the applicability of spectroscopic measurements for the prediction of distinct biophysical and biochemical parameters in the laboratory and under field conditions, respectively. The estimation of parameters could be conducted to a great extent with high accuracy. An enhanced basis of calibration for the laboratory study and the first field experiment (grass/clover-mixture) yields in improved robustness of calibration models and allows for an extended application of spectroscopic measurement techniques, even under varying conditions. Furthermore, off-nadir measurements inside a canopy yield in higher prediction accuracies, particularly for crops characterised by distinct height increment as observed for maize.
Resumo:
Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.