819 resultados para rule-based algorithms


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Realization that hard coastal infrastructures support lower biodiversity than natural habitats has prompted a wealth of research seeking to identify design enhancements offering ecological benefits. Some studies showed that artificial structures could be modified to increase levels of diversity. Most studies, however, only considered the short-term ecological effects of such modifications, even though reliance on results from short-term studies may lead to serious misjudgements in conservation. In this study, a seven-year experiment examined how the addition of small pits to otherwise featureless seawalls may enhance the stocks of a highly-exploited limpet. Modified areas of the seawall supported enhanced stocks of limpets seven years after the addition of pits. Modified areas of the seawall also supported a community that differed in the abundance of littorinids, barnacles and macroalgae compared to the controls. Responses to different treatments (numbers and size of pits) were species-specific and, while some species responded directly to differences among treatments, others might have responded indirectly via changes in the distribution of competing species. This type of habitat enhancement can have positive long-lasting effects on the ecology of urban seascapes. Understanding of species interactions could be used to develop a rule-based approach to enhance biodiversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Realization that hard coastal infrastructures support lower biodiversity than natural habitats has prompted a wealth of research seeking to identify design enhancements offering ecological benefits. Some studies showed that artificial structures could be modified to increase levels of diversity. Most studies, however, only considered the short-term ecological effects of such modifications, even though reliance on results from short-term studies may lead to serious misjudgements in conservation. In this study, a seven-year experiment examined how the addition of small pits to otherwise featureless seawalls may enhance the stocks of a highly-exploited limpet. Modified areas of the seawall supported enhanced stocks of limpets seven years after the addition of pits. Modified areas of the seawall also supported a community that differed in the abundance of littorinids, barnacles and macroalgae compared to the controls. Responses to different treatments (numbers and size of pits) were species-specific and, while some species responded directly to differences among treatments, others might have responded indirectly via changes in the distribution of competing species. This type of habitat enhancement can have positive long-lasting effects on the ecology of urban seascapes. Understanding of species interactions could be used to develop a rule-based approach to enhance biodiversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computational intelligent support for decision making is becoming increasingly popular and essential among medical professionals. Also, with the modern medical devices being capable to communicate with ICT, created models can easily find practical translation into software. Machine learning solutions for medicine range from the robust but opaque paradigms of support vector machines and neural networks to the also performant, yet more comprehensible, decision trees and rule-based models. So how can such different techniques be combined such that the professional obtains the whole spectrum of their particular advantages? The presented approaches have been conceived for various medical problems, while permanently bearing in mind the balance between good accuracy and understandable interpretation of the decision in order to truly establish a trustworthy ‘artificial’ second opinion for the medical expert.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A smart solar photovoltaic grid system is an advent of innovation coherence of information and communications technology (ICT) with power systems control engineering via the internet [1]. This thesis designs and demonstrates a smart solar photovoltaic grid system that is selfhealing, environmental and consumer friendly, but also with the ability to accommodate other renewable sources of energy generation seamlessly, creating a healthy competitive energy industry and optimising energy assets efficiency. This thesis also presents the modelling of an efficient dynamic smart solar photovoltaic power grid system by exploring the maximum power point tracking efficiency, optimisation of the smart solar photovoltaic array through modelling and simulation to improve the quality of design for the solar photovoltaic module. In contrast, over the past decade quite promising results have been published in literature, most of which have not addressed the basis of the research questions in this thesis. The Levenberg-Marquardt and sparse based algorithms have proven to be very effective tools in helping to improve the quality of design for solar photovoltaic modules, minimising the possible relative errors in this thesis. Guided by theoretical and analytical reviews in literature, this research has carefully chosen the MatLab/Simulink software toolbox for modelling and simulation experiments performed on the static smart solar grid system. The auto-correlation coefficient results obtained from the modelling experiments give an accuracy of 99% with negligible mean square error (MSE), root mean square error (RMSE) and standard deviation. This thesis further explores the design and implementation of a robust real-time online solar photovoltaic monitoring system, establishing a comparative study of two solar photovoltaic tracking systems which provide remote access to the harvested energy data. This research made a landmark innovation in designing and implementing a unique approach for online remote access solar photovoltaic monitoring systems providing updated information of the energy produced by the solar photovoltaic module at the site location. In addressing the challenge of online solar photovoltaic monitoring systems, Darfon online data logger device has been systematically integrated into the design for a comparative study of the two solar photovoltaic tracking systems examined in this thesis. The site location for the comparative study of the solar photovoltaic tracking systems is at the National Kaohsiung University of Applied Sciences, Taiwan, R.O.C. The overall comparative energy output efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic monitoring system as observed at the research location site is about 72% based on the total energy produced, estimated money saved and the amount of CO2 reduction achieved. Similarly, in comparing the total amount of energy produced by the two solar photovoltaic tracking systems, the overall daily generated energy for the month of July shows the effectiveness of the azimuthal-altitude tracking systems over the 450 stationary solar photovoltaic system. It was found that the azimuthal-altitude dual-axis tracking systems were about 68.43% efficient compared to the 450 stationary solar photovoltaic systems. Lastly, the overall comparative hourly energy efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic energy system was found to be 74.2% efficient. Results from this research are quite promising and significant in satisfying the purpose of the research objectives and questions posed in the thesis. The new algorithms introduced in this research and the statistical measures applied to the modelling and simulation of a smart static solar photovoltaic grid system performance outperformed other previous works in reviewed literature. Based on this new implementation design of the online data logging systems for solar photovoltaic monitoring, it is possible for the first time to have online on-site information of the energy produced remotely, fault identification and rectification, maintenance and recovery time deployed as fast as possible. The results presented in this research as Internet of things (IoT) on smart solar grid systems are likely to offer real-life experiences especially both to the existing body of knowledge and the future solar photovoltaic energy industry irrespective of the study site location for the comparative solar photovoltaic tracking systems. While the thesis has contributed to the smart solar photovoltaic grid system, it has also highlighted areas of further research and the need to investigate more on improving the choice and quality design for solar photovoltaic modules. Finally, it has also made recommendations for further research in the minimization of the absolute or relative errors in the quality and design of the smart static solar photovoltaic module.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2014

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Food bought at supermarkets in, for instance, North America or the European Union, give comprehensive information about ingredients and allergens. Meanwhile, the menus of restaurants are usually incomplete and cannot be normally completed by the waiter. This is specially important when traveling to countries with a di erent culture. A curious example is "calamares en su tinta" (squid in its own ink), a common dish in Spain. Its brief description would be "squid with boiled rice in its own (black) ink", but an ingredient of its sauce is flour, a fact very important for celiacs. There are constraints based on religious believes, due to food allergies or to illnesses, while others just derive from personal preferences. Another complicated situation arise in hospitals, where the doctors' nutritional recommendations have to be added to the patient's usual constraints. We have therefore designed and developed a Rule Based Expert System (RBES) that can address these problems. The rules derive directly from the recipes of the di fferent dishes and contain the information about the required ingredients and ways of cooking. In fact, we distinguish: ingredients and ways of cooking, intermediate products (like sauces, that aren't always made explicit) and final products (the dishes listed in the menu of the restaurant). For a certain restaurant, customer and instant, the input to the RBES are: actualized stock of ingredients and personal characteristics of that customer. The RBES then prepares a "personalized menu" using set operations and knowledge extraction (thanks to an algebraic inference engine [1]). The RBES has been implemented in the computer algebra system MapleTM2015. A rst version of this work was presented at "Applications of Computer Algebra 2015" (ACA'2015) conference. The corresponding abstract is available at [2].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conventional vehicles are creating pollution problems, global warming and the extinction of high density fuels. To address these problems, automotive companies and universities are researching on hybrid electric vehicles where two different power devices are used to propel a vehicle. This research studies the development and testing of a dynamic model for Prius 2010 Hybrid Synergy Drive (HSD), a power-split device. The device was modeled and integrated with a hybrid vehicle model. To add an electric only mode for vehicle propulsion, the hybrid synergy drive was modified by adding a clutch to carrier 1. The performance of the integrated vehicle model was tested with UDDS drive cycle using rule-based control strategy. The dSPACE Hardware-In-the-Loop (HIL) simulator was used for HIL simulation test. The HIL simulation result shows that the integration of developed HSD dynamic model with a hybrid vehicle model was successful. The HSD model was able to split power and isolate engine speed from vehicle speed in hybrid mode.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a method to indicate potential problems when planning dye penetrant and x-ray inspection of welded components. Inspection has been found to be an important part of the manufacturability evaluation made in a large CAD-based parametric environment for making multidisciplinary design simulations in early stages of design at an aircraft component manufacturer. The paper explains how the proposed method is to be included in the design platform at the company. It predicts the expected probability of detection of cracks (POD) in situations where the geometry of the parts is unfavourable for inspection so that potential problems can be discovered and solved in early stages. It is based on automatically extracting information from CAD-models and making a rule-based evaluation. It also provides a scale for how favourable the geometry is for inspection. In the paper it is also shown that the manufacturability evaluation need to take into consideration the expected stresses in the structures, highlighting the importance of multi-disciplinary simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper presents an application that composes formal poetry in Spanish in a semiautomatic interactive fashion. JASPER is a forward reasoning rule-based system that obtains from the user an intended message, the desired metric, a choice of vocabulary, and a corpus of verses; and, by intelligent adaptation of selected examples from this corpus using the given words, carries out a prose-to-poetry translation of the given message. In the composition process, JASPER combines natural language generation and a set of construction heuristics obtained from formal literature on Spanish poetry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work proposes different approaches to extend the mathematical methods of supervisory energy management used in terrestrial environments to the maritime sector, that diverges in constraints, variables and disturbances. The aim is to find the optimal real-time solution that includes the minimization of a defined track time, while maintaining the classical energetic approach. Starting from analyzing and modelling the powertrain and boat dynamics, the energy economy problem formulation is done, following the mathematical principles behind the optimal control theory. Then, an adaptation aimed in finding a winning strategy for the Monaco Energy Boat Challenge endurance trial is performed via ECMS and A-ECMS control strategies, which lead to a more accurate knowledge of energy sources and boat’s behaviour. The simulations show that the algorithm accomplishes fuel economy and time optimization targets, but the latter adds huge tuning and calculation complexity. In order to assess a practical implementation on real hardware, the knowledge of the previous approaches has been translated into a rule-based algorithm, that let it be run on an embedded CPU. Finally, the algorithm has been tuned and tested in a real-world race scenario, showing promising results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This master thesis work is focused on the development of a predictive EHC control function for a diesel plug-in hybrid electric vehicle equipped with a EURO 7 compliant exhaust aftertreatment system (EATS), with the purpose of showing the advantages provided by the implementation of a predictive control strategy with respect to a rule-based one. A preliminary step will be the definition of an accurate powertrain and EATS physical model, starting from already existing and validated applications. Then, a rule-based control strategy managing the torque split between the electric motor (EM) and the internal combustion engine (ICE) will be developed and calibrated, with the main target of limiting tailpipe NOx emission by taking into account EM and ICE operating conditions together with EATS conversion efficiency. The information available from vehicle connectivity will be used to reconstruct the future driving scenario, also referred to as electronic horizon (eHorizon), and in particular to predict ICE first start. Based on this knowledge, an EATS pre-heating phase can be planned to avoid low pollutant conversion efficiencies, thus preventing high NOx emission due to engine cold start. Consequently, the final NOx emission over the complete driving cycle will be strongly reduced, allowing to comply with the limits potentially set by the incoming EURO 7 regulation. Moreover, given the same NOx emission target, the gain achieved thanks to the implementation of an EHC predictive control function will allow to consider a simplified EATS layout, thus reducing the related manufacturing cost. The promising results achieved in terms of NOx emission reduction show the effectiveness of the application of a predictive control strategy focused on EATS thermal management and highlight the potential of a complete integration and parallel development of involved vehicle physical systems, control software and connectivity data management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of global warming. Recently, several metropolitan cities introduced Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce localized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles, which usually work in depleting mode. In order to address these issues, the present thesis presents a viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event along a selected route. The battery energy needed, in the form of a minimum State of Charge (SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That value is then fed to both a Rule-Based Strategy, developed specifically for this application, and an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this approach has been tested with a Connected Hardware-in-the-Loop (C-HiL) on a driving cycle measured on-road, stimulating the predictions with multiple re-routings. However, even if hybrid electric vehicles have been recognized as a valid solution in response to increasingly tight regulations, the reduced engine load and the repeated engine starts and stops may reduce substantially the temperature of the exhaust after-treatment system (EATS), leading to relevant issues related to pollutant emission control. In this context, electrically heated catalysts (EHCs) represent a promising solution to ensure high pollutant conversion efficiency without affecting engine efficiency and performance. This work aims at studying the advantages provided by the introduction of a predictive EHC control function for a light-duty Diesel plug-in hybrid electric vehicle (PHEV) equipped with a Euro 7-oriented EATS. Based on the knowledge of future driving scenarios provided by vehicular connectivity, engine first start can be predicted and therefore an EATS pre-heating phase can be planned.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The focus of the thesis is the application of different attitude’s determination algorithms on data evaluated with MEMS sensor using a board provided by University of Bologna. MEMS sensors are a very cheap options to obtain acceleration, and angular velocity. The use of magnetometers based on Hall effect can provide further data. The disadvantage is that they have a lot of noise and drift which can affects the results. The different algorithms that have been used are: pitch and roll from accelerometer, yaw from magnetometer, attitude from gyroscope, TRIAD, QUEST, Magdwick, Mahony, Extended Kalman filter, Kalman GPS aided INS. In this work the algorithms have been rewritten to fit perfectly with the data provided from the MEMS sensor. The data collected by the board are acceleration on the three axis, angular velocity on the three axis, magnetic fields on the three axis, and latitude, longitude, and altitude from the GPS. Several tests and comparisons have been carried out installing the electric board on different vehicles operating in the air and on ground. The conclusion that can be drawn from this study is that the Magdwich filter is the best trade-off between computational capabilities required and results obtained. If attitude angles are obtained from accelerometers, gyroscopes, and magnetometer, inconsistent data are obtained for cases where high vibrations levels are noticed. On the other hand, Kalman filter based algorithms requires a high computational burden. TRIAD and QUEST algorithms doesn’t perform as well as filters.