972 resultados para reduction kinetics
Resumo:
OBJECTIVE: Parasympathetic dysfunction is an independent risk factor in individuals with coronary artery disease, and cholinergic stimulation is a potential therapeutical option. We determined the effects of pyridostigmine bromide, a reversible anticholinesterase agent, on electrocardiographic variables of healthy individuals. METHODS: We carried out a cross-sectional, double blind, randomized, placebo-controlled study. We obtained electrocardiographic tracings in 12 simultaneous leads of 10 healthy young individuals at rest before and after oral administration of 45 mg of pyridostigmine or placebo. RESULTS: Pyridostigmine increased RR intervals (before: 886±27 ms vs after: 1054±37 ms) and decreased QTc dispersion (before: 72±9ms vs after: 45±3ms), without changing other electrocardiographic variables (PR segment, QT interval, QTc, and QT dispersion). CONCLUSION: Bradycardia and the reduction in QTc dispersion induced by pyridostigmine may effectively represent a protective mechanism if these results can be reproduced in individuals with cardiovascular diseases.
Resumo:
OBJECTIVE: To report about a group of physicians' understanding of the recommendations of the II Brazilian Guidelines Conference on Dyslipidemias, and about the state of the art of primary and secondary prevention of atherosclerosis. METHODS: Through the use of a questionnaire on dyslipidemia, atherosclerosis prevention, and recommendations for lipid targets established by the II Brazilian Guidelines Conference on Dyslipidemias, 746 physicians, 98% cardiologists, were evaluated. RESULTS:Eighty-seven percent of the respondents stated that the treatment of dyslipidemia changes the natural history of coronary disease. Although most of the participants followed the total cholesterol recommendations (<200mg/dL for atherosclerosis prevention), only 55.8% would adopt the target of LDL-C <100 mg/dL for secondary prevention. Between 30.5 and 36.7% answered, in different questions, that the recommended level for HDL-C should be <35mg/dL. Only 32.7% would treat their patients indefinitely with lipid- lowering drugs. If the drug treatment did not reach the proposed target, only 35.5% would increase the dosage, and 29.4% would change the medication. Participants did not know the targets proposed for diabetics. CONCLUSION: Although the participating physicians valued the role played by lipids in the prevention of atherosclerosis, serious deficiencies exist in their knowledge of the recommendations given during the II Brazilian Guidelines Conference on Dyslipidemias.
Resumo:
Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating chargeby reducing the come-up time (CUT) needed to reach a target temperatureand increase of the electric field applied (from 6 to 12 V cm1). Exposure of reactive free thiol groups involved in molecular unfolding of -lactoglobulin (-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
Resumo:
OBJECTIVE: To use published Hypertension Optimal Treatment (HOT) Study data to evaluate changes in cardiovascular mortality in nondiabetic hypertensive patients according to the degree of reduction in their diastolic blood pressure. METHODS: In the HOT Study, 18,700 patients from various centers were allocated at random to groups having different objectives of for diastolic blood pressure: <=90 (n=6264); <=85 (n=6264); <=80mmHg (n=6262). Felodipine was the basic drug used. Other antihypertensive drugs were administered in a sequential manner, aiming at the objectives of diastolic blood pressure reduction. RESULTS: The group of nondiabetic hypertensive subjects with diastolic pressure<=80mmHg had a cardiovascular mortality ratio of 4.1/1000 patients/year, 35.5% higher than the group with diastolic pressure <=90mmHg (cardiovascular mortality ratio, 3.1/1000 patients/year). In contrast, diabetic patients allocated to the diastolic pressure objective group of <=80mmHg had a 66.7% reduction in cardiovascular mortality (3.7/1000 patients/year) when compared with the diastolic pressure group of <=90mmHg (cardiovascular mortality ratio, 11.1/1000 patients/year). CONCLUSION: The results indicate that in hypertensive diabetic patients reduction in diastolic blood pressure to levels <=80mmHg decreases the risk of fatal cardiovascular events. It remains necessary to define the level of diastolic blood pressure <=90mmHg at which maximal reduction in cardiovascular mortality is obtained for nondiabetics.
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Molecular e Saúde).
Resumo:
This work presents a molecular-scale agent-based model for the simulation of enzymatic reactions at experimentally measured concentrations. The model incorporates stochasticity and spatial dependence, using diffusing and reacting particles with physical dimensions. We developed strategies to adjust and validate the enzymatic rates and diffusion coefficients to the information required by the computational agents, i.e., collision efficiency, interaction logic between agents, the time scale associated with interactions (e.g., kinetics), and agent velocity. Also, we tested the impact of molecular location (a source of biological noise) in the speed at which the reactions take place. Simulations were conducted for experimental data on the 2-hydroxymuconate tautomerase (EC 5.3.2.6, UniProt ID Q01468) and the Steroid Delta-isomerase (EC 5.3.3.1, UniProt ID P07445). Obtained results demonstrate that our approach is in accordance to existing experimental data and long-term biophysical and biochemical assumptions.
Resumo:
The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.
Resumo:
OBJECTIVE: To investigate the role of hemodynamic changes occurring during acute MI in subsequent fibrosis deposition within non-MI. METHODS: By using the rat model of MI, 3 groups of 7 rats each [sham, SMI (MI <30%), and LMI (MI >30%)] were compared. Systemic and left ventricular (LV) hemodynamics were recorded 10 minutes before and after coronary artery ligature. Collagen volume fraction (CVF) was calculated in picrosirius red-stained heart tissue sections 4 weeks later. RESULTS: Before surgery, all hemodynamic variables were comparable among groups. After surgery, LV end-diastolic pressure increased and coronary driving pressure decreased significantly in the LMI compared with the sham group. LV dP/dt max and dP/dt min of both the SMI and LMI groups were statistically different from those of the sham group. CVF within non-MI interventricular septum and right ventricle did not differ between each MI group and the sham group. Otherwise, subendocardial (SE) CVF was statistically greater in the LMI group. SE CVF correlated negatively with post-MI systemic blood pressure and coronary driving pressure, and positively with post-MI LV dP/dt min. Stepwise regression analysis identified post-MI coronary driving pressure as an independent predictor of SE CVF. CONCLUSION: LV remodeling in rats with MI is characterized by predominant SE collagen deposition in non-MI and results from a reduction in myocardial perfusion pressure occurring early on in the setting of MI.
Resumo:
El objetivo del presente proyecto es estudiar los procesos físicos y químicos del radical OH con compuestos orgánicos volátiles (COVs), con los cuales sea factible la formación de agregados de van der Waals (vdW) responsables de la curvatura en los gráficos de Arrhenius, empleando técnicas modernas, complementarias entre si y novedosas en el país. El problema será abordado desde tres perspectivas complementarias: 1) estudios cinéticos, 2) estudios mecanísticos y de distribución de productos y 3) estudios de la dinámica de los procesos físicos y químicos. La finalidad es alcanzar una mejor comprensión de los mecanismos que intervienen en el comportamiento químico de especies presentes en la atmósfera y obtener datos cinéticos de alta calidad que puedan alimentar modelos computacionales capaces de describir la composición de la atmósfera, presente y futura. Los objetivos son estudiar: 1) mediante fotólisis láser pulsada con detección por fluorescencia inducida por láser (PLP-LIF), en reactores de flujo, la cinética de reacción del radical OH(v”=0) con COVs que presentan gráficos de Arrhenius curvos con energías de activación negativas, tales como alcoholes insaturados, alquenos halogenados, éteres halogenados, ésteres alifáticos; 2) en una cámara de simulación de condiciones atmosféricas de gran volumen (4500 L), la identidad y el rendimiento de productos de las reacciones mencionadas, a fines de evaluar su impacto atmosférico y dilucidar los mecanismos de reacción; 3) mediante haces moleculares y espectroscopía láser, la estructura y reactividad de complejos de vdW entre alcoholes insaturados o aromáticos (cresoles) y el radical OH, como modelo de los aductos propuestos como responsables de la desviación al comportamiento de Arrhenius de las reacciones mencionadas; 4) mediante PLP-LIF y expansiones supersónicas, las constantes específicas estado a estado (ksts) de relajación/reacción del radical OH(v”=1-4) vibracionalmente excitado con los COVs mencionados. Los resultados experimentales obtenidos serán contrastados con cálculos ab-initio de estructura electrónica, los cuales apoyarán las interpretaciones, permitirán proponer estructuras de estados de transición y aductos colisionales, como así también calcular las frecuencias de vibración de los complejos de vdW para su posterior asignación en los espectros LIF y REMPI. Asimismo, los mecanismos de reacción propuestos y los parámetros cinéticos medidos experimentalmente serán comparados con aquellos obtenidos por cálculos teóricos. The aim of this project is to study the physical and chemical processes of OH radicals with volatile organic compounds (VOCs) with which the formation of van der Waals (vdW) clusters, responsible for the observed curvature in the Arrhenius plots, might be feasible. The problem will be addressed as follow : 1) kinetic studies; 2) products distribution and mechanistic studies and 3) dynamical studies of the physical and chemical processes. The purpose is to obtain a better understanding of the mechanisms that govern the chemical behavior of species present in the atmosphere and to obtain high quality kinetic data to be used as input to computational models. We will study: 1) the reaction kinetics of OH (v”=0) radicals with VOCs such as unsaturated alcohols, halogenated alkenes, halogenated ethers, aliphatic esters, which show curved Arrhenius plots and negative activation energies, by PLP-LIF, in flow systems; 2) in a large volume (4500 L) atmospheric simulation chamber, reaction products yields in order to evaluate their atmospheric impact and reaction mechanisms; 3) using molecular beams and laser spectroscopy, the structure and reactivity of the vdW complexes formed between the unsaturated or aromatic alcohols and the OH radicals as a model of the adducts proposed as responsible for the non-Arrhenius behavior; 4) the specific state-to-state relaxation/reaction rate constants (ksts) of the vibrationally excited OH (v”=1-4) radical with the VOCs by PLP-LIF and supersonic expansions. Ab-initio calculations will be carried out to support the interpretation of the experimental results, to obtain the transition state and collisional adducts structures, as well as to calculate the vibrational frequencies of the vdW complexes to assign to the LIF and REMPI spectra. Also, the proposed reaction mechanisms and the experimentally measured kinetic parameters will be compared with those obtained from theoretical calculations.
Resumo:
Methanol oxidation, Kinetics, Mechanism, Rate expression, MEA, PtRu catalysts, Cyclone Flow Cell
Resumo:
Drying of porous media, pore network, pore structure, capillary forces, viscous forces, drying kinetics
Resumo:
Introduction: Although diuretics are mainly used for the treatment of acute decompensated heart failure (ADHF), inadequate responses and complications have led to the use of extracorporeal ultrafiltration (UF) as an alternative strategy for reducing volume overloads in patients with ADHF. Objective: The aim of our study is to perform meta-analysis of the results obtained from studies on extracorporeal venous ultrafiltration and compare them with those of standard diuretic treatment for overload volume reduction in acute decompensated heart failure. Methods: MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials databases were systematically searched using a pre‑specified criterion. Pooled estimates of outcomes after 48 h (weight change, serum creatinine level, and all-cause mortality) were computed using random effect models. Pooled weighted mean differences were calculated for weight loss and change in creatinine level, whereas a pooled risk ratio was used for the analysis of binary all-cause mortality outcome. Results: A total of nine studies, involving 613 patients, met the eligibility criteria. The mean weight loss in patients who underwent UF therapy was 1.78 kg [95% Confidence Interval (CI): −2.65 to −0.91 kg; p < 0.001) more than those who received standard diuretic therapy. The post-intervention creatinine level, however, was not significantly different (mean change = −0.25 mg/dL; 95% CI: −0.56 to 0.06 mg/dL; p = 0.112). The risk of all-cause mortality persisted in patients treated with UF compared with patients treated with standard diuretics (Pooled RR = 1.00; 95% CI: 0.64–1.56; p = 0.993). Conclusion: Compared with standard diuretic therapy, UF treatment for overload volume reduction in individuals suffering from ADHF, resulted in significant reduction of body weight within 48 h. However, no significant decrease of serum creatinine level or reduction of all-cause mortality was observed.
Resumo:
Magdeburg, Univ., Diss, 2007
Resumo:
Background:Polypharmacy is a significant economic burden.Objective:We tested whether using reverse auction (RA) as compared with commercial pharmacy (CP) to purchase medicine results in lower pharmaceutical costs for heart failure (HF) and heart transplantation (HT) outpatients.Methods:We compared the costs via RA versus CP in 808 HF and 147 HT patients followed from 2009 through 2011, and evaluated the influence of clinical and demographic variables on cost.Results:The monthly cost per patient for HF drugs acquired via RA was $10.15 (IQ 3.51-40.22) versus $161.76 (IQ 86.05‑340.15) via CP; for HT, those costs were $393.08 (IQ 124.74-774.76) and $1,207.70 (IQ 604.48-2,499.97), respectively.Conclusion:RA may reduce the cost of prescription drugs for HF and HT, potentially making HF treatment more accessible. Clinical characteristics can influence the cost and benefits of RA. RA may be a new health policy strategy to reduce costs of prescribed medications for HF and HT patients, reducing the economic burden of treatment.
Resumo:
Abstract Background: Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective: To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods: The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results: The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions: In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur.