991 resultados para rat kidney
Resumo:
Mammals vary dramatically in lifespan, by at least two-orders of magnitude, but the molecular basis for this difference remains largely unknown. The bowhead whale Balaena mysticetus is the longest-lived mammal known, with an estimated maximal lifespan in excess of two hundred years. It is also one of the two largest animals and the most cold-adapted baleen whale species. Here, we report the first genome-wide gene expression analyses of the bowhead whale, based on the de novo assembly of its transcriptome. Bowhead whale or cetacean-specific changes in gene expression were identified in the liver, kidney and heart, and complemented with analyses of positively selected genes. Changes associated with altered insulin signaling and other gene expression patterns could help explain the remarkable longevity of bowhead whales as well as their adaptation to a lipid-rich diet. The data also reveal parallels in candidate longevity adaptations of the bowhead whale, naked mole rat and Brandt's bat. The bowhead whale transcriptome is a valuable resource for the study of this remarkable animal, including the evolution of longevity and its important correlates such as resistance to cancer and other diseases.
Resumo:
The study investigated the effects of oestrogen deficiency on dental implant in a rat model. An osteoporosis rat model was successfully established for dental implant research and it was noted that bone cells functioned differently in osteoporotic condition during the healing of dental implant. The study further demonstrated that implant surface roughness could stimulate bone formation, therefore, improve the bone healing in osteoporotic condition.
Resumo:
The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.
Resumo:
Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.
Resumo:
Background Self-management of chronic kidney disease (CKD) is crucial for health outcomes and people need to be effectively supported by healthcare professionals (HCPs). Some programmes designed to improve self-management have been implemented, but people with the disease are rarely consulted regarding what they desire from these programmes. Objectives To provide a synthesis of the literature on preferences for self-management support of people with CKD. Design An integrative review. Methods Four databases (MedLine, CINAHL, PsycARTICLES and PsycINFO) were searched using relevant search terms. Results The search strategy identified 1,913 records, of which 12 studies met inclusion criteria. Ten themes were identified as important areas to be addressed by self-management interventions. In addition, patient suggestions for implementation of such interventions are discussed. Conclusion The principles of a person-centred approach ought to frame the support provided by HCPs when supporting those with CKD to better self-manage.
Resumo:
To evaluate the passage of cytokines through the gastrointestinal tract, we investigated the digestion of interleukin-8 (IL-8) and tumour necrosis factor α (TNFα), in vitro and in vivo, and their propensity to induce intestinal inflammation. We serially immuno-assayed IL-8 and TNFα solutions co-incubated with each of three pancreatin preparations at pH 4.5 and pH 8. We gavaged IL-8, TNFα and marker into 15 Wistar rats, and measured their faecal cytokine concentrations by ELISA and histologically examined their guts. IL-8 immunoreactivity was extinguished by all pancreatin preparations after 1 h of incubation at 37 °C. TNFα concentration progressively fell from 1 to 4 h with all enzyme preparations. Buffer control samples maintained their cytokine concentrations throughout incubation. No IL-8 or TNFα was detected in any rat faecal pellets. There was no significant proinflammatory effect of the gavaged cytokines on rat intestine. IL-8 and TNFα in aqueous solution could well be fully digested in the CF gut when transit time is normal and exogenous enzymes are provided, although cytokines swallowed in viscous sputum may be protected from such digestion
Resumo:
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined.
Resumo:
Aims: To establish a model to measure bidirectional flow of water from a glucose oral rehydration solution (G-ORS) and a newly developed rice-based oral rehydration solution (R-ORS) using a dual isotope tracer technique in a rat perfusion model. To measure net water, sodium and potassium absorption from the ORS. Methods: In viva steady-state perfusion studies were carried out in normal and secreting (induced by cholera toxin) rat small intestine (n = 11 in each group). To determine bidirectional flow of water from the ORS the animals were initially labelled with tritium, and deuterium was added to the perfusion solution. Sequential perfusate and blood samples were collected after attainment of steady-state conditions and analysed for water and electrolyte content. Results: There was a significant increase in net water absorption from the R-ORS compared to the G-ORS in both the normal (P < 0.02) and secreting intestine (P < 0.05). Water efflux was significantly reduced in the R-ORS group compared to the G-ORS group in both the normal (P < 0.01) and the secreting intestine (P < 0.01). There was an increase in sodium absorption in the R-ORS group compared to the G-ORS. The G-ORS produced a significantly greater blood glucose level at 75 min compared to the R-ORS (P < 0.03) in the secreting intestine. Conclusions: This study demonstrates the improved water absorption from a rice-based ORS in both the normal and secreting intestine. Evidence that the absorption of water may be influenced by the osmolality of the ORS was also demonstrated.
Resumo:
Trypsin-treated rat brain myelin was subjected to biochemical and X-ray studies. Untreated myelin gave rise to a pattern of three rings with a fundamental repeat period of 155 Angstrom consisting of two bilayers per repeat period, whereas myelin treated with trypsin showed a fundamental repeat period of 75 Angstrom with one bilayer per repeat period. The integrated raw intensity of the h=4 reflection with respect to the h=2 reflection is 0.38 for untreated myelin. The corresponding value reduced to 0.23, 0.18, 0.17 for myelin treated with 5, 10, 40 units of trypsin per mg of myelin, respectively, for 30 min at 30 degrees C. The decrease in relative raw intensity of the higher-order reflection relative to the lower-order reflection is suggestive of a disordering of the phosphate groups upon trypsin treatment or an increased mosaicity of the membrane or a combination of both these effects, However, trypsin treatment does not lead to a complete breakdown of the membrane, The integrated intensity of the h=1 reflection, though weak, is above the measurable threshold for untreated myelin, whereas the corresponding intensity is below the measurable threshold for trypsin-treated myelin, indicating a possible asymmetric to symmetric transition of the myelin bilayer structure about its centre after trypsin treatment.
Resumo:
Analysis of proteins of smooth endoplasmic reticulum (SER) of Leydig cells from immature and admit rats by two-dimensional polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of several new proteins in the adult rats. Administration of human chorionic gonadotropin to immature rats for ten days also resulted in a significant increase as well as the appearance of several new proteins. The general pattern of SDS-PAGE analysis of the SER proteins of Leydig cells resembled that of the adult rat. SDS-PAGE analysis of the SER proteins of Leydig cells from adult rats following deprivation of endogenous luteinizing hormone by administration of antiserum to ovine luteinizing hormone resulted in a pattern which to certain extent resembled that of an immature I at. Western Blot analysis of luteinizing hormone antiserum treated rat Leydig cell proteins revealed a decrease in the 17-alpha-hydroxylase compared to the control. These results provide biochemical evidence for the suggestion that one of the main functions of luteinizing hormone is the control of biogenesis and/or turnover SER of Leydig cells in the rat.
Resumo:
Ultraviolet (UV) radiation is one of the major risk factors of cataract (loss of eye-lens transparency). The influence of UVB radiation (300 nm, 100 mu W cm(-2)) on the activity and apparent kinetic constants (K-m and V-max) of rat lens hexokinase (HK;EC2.7.1.1), phosphofructokinase (PFK;EC2.7.1.11), isocitrate dehydrogenase (ICDH;EC1.1.1.41) and malate dehydrogenase (MDH;EC1.1.1.37) of energy metabolism has been investigated by irradiating the lens homogenate of three-and 12-month-old rats. In the three-month-old group specific activities of HK and PFK are reduced by 56 and 43 %, respectively, and there is no change in ICDH and MDH activities after a 24 h exposure. On the other hand, in the 12-month-old group the decreases are 72, 71, 24 and 16 % for HK, PFK. ICDH and MDH, respectively. UVB irradiation increases the apparent K-m of HK and PFK (in both age groups), whereas the K-m of ICDH and MDH is not altered. While the decrease in V-max of these enzymes due to UVB exposure is only marginal in three-month-old rats, it is more pronounced (significant) in 12-month-old rats. A similar decrease in enzyme activities of HK and PFK is also observe upon UVB exposure of the intact rat lens. The photoinduced changes in energy metabolism may in turn have a bearing on lens transparency, particularly at an older age.
Resumo:
A number of studies in yeast have shown that DNA topoisomerase TI is essential for chromosome condensation and disjunction during mitosis at the metaphase/anaphase transition and meiosis I. Accordingly, kinetic and mechanistic studies have implied a role for topoisomerase rr in chromosome disjunction. As a step toward understanding the nature and role of topoisomerase II in a mammalian germline in vivo, we have purified topoisomerase II from rat testis to homogeneity and ascertained several of its catalytic activities in conjunction with that of the purified enzyme from liver. The purified enzymes appeared to be monomers under denaturing conditions; however, they differed in their relative molecular mass. Topoisomerase II from testis and liver have apparent molecular masses of 150 +/- 10 kDa and 160 +/- 10 kDa, respectively. The native molecular mass of testis topoisomerase II as assayed by immunoblot analysis of cell-foe extracts, prepared in the presence of SDS and a number of protease inhibitors, corroborated with the size of the purified enzyme. Both enzymes are able to promote decatenation and relax supercoiled DNA substrates in an ATP and Mg2+-dependent manner. However, quantitative comparison of catalytic properties of topoisomerase II from testis with that of the enzyme from liver displayed significant differences in their efficiencies. Optimal pH values for testis enzyme are 6.5 to 8.5 while they are 6 to 7.5 for the liver enzyme. Intriguingly, the relaxation activity of liver topoisomerase II was inhibited by potassium glutamate at 1 M, whereas testis enzyme required about half its concentration. These findings argue that topoisomerase II from rat testis is structurally distinct from that of its somatic form and the functional differences between the two enzymes parallels with the physiological environment that is unique to these two tissues.
Resumo:
Immunoneutralization of maternal RCP results in a >90% decrease in the content and the incorporation of [2-14C]riboflavin into embryonic FAD as well as a percentage redistribution of both embryonic FMN and riboflavin. This is unaccompanied by any discernible changes in flavin distribution pattern in the maternal liver. Embryonic α-glycerophosphate dehydrogenase and NADPH-cytochrome c reductase register significant decreases in activities in the RCP antiserum-treated rats. These alterations readily explain the arrest of foetal growth culminating in pregnancy termination in the antiserum-treated animals.
Resumo:
The specific activity and content of cytochrome oxidase in the rough endoplasmic reticulum--mitochondrion complex are higher than in the mitochondrial fraction. Radiolabelling studies with the use of hepatocytes and isolated microsomal and rough endoplasmic reticulum--mitochondrion fractions, followed by immunoprecipitation with anti-(cytochrome oxidase) antibody, reveal that the nuclear-coded cytoplasmic subunits of cytochrome oxidase are preferentially synthesized in the latter fraction. The results have a bearing on the mechanism of transport of these subunits into mitochondria.