919 resultados para query reformulation, search pattern, search strategy
Resumo:
Feature selection and feature weighting are useful techniques for improving the classification accuracy of K-nearest-neighbor (K-NN) rule. The term feature selection refers to algorithms that select the best subset of the input feature set. In feature weighting, each feature is multiplied by a weight value proportional to the ability of the feature to distinguish pattern classes. In this paper, a novel hybrid approach is proposed for simultaneous feature selection and feature weighting of K-NN rule based on Tabu Search (TS) heuristic. The proposed TS heuristic in combination with K-NN classifier is compared with several classifiers on various available data sets. The results have indicated a significant improvement in the performance in classification accuracy. The proposed TS heuristic is also compared with various feature selection algorithms. Experiments performed revealed that the proposed hybrid TS heuristic is superior to both simple TS and sequential search algorithms. We also present results for the classification of prostate cancer using multispectral images, an important problem in biomedicine.
Resumo:
Based on an algorithm for pattern matching in character strings, we implement a pattern matching machine that searches for occurrences of patterns in multidimensional time series. Before the search process takes place, time series are encoded in user-designed alphabets. The patterns, on the other hand, are formulated as regular expressions that are composed of letters from these alphabets and operators. Furthermore, we develop a genetic algorithm to breed patterns that maximize a user-defined fitness function. In an application to financial data, we show that patterns bred to predict high exchange rates volatility in training samples retain statistically significant predictive power in validation samples.
Resumo:
This paper highlights the role of narratives in expressing, shaping and ordering urban life, and as tools for analysing urban conflicts. The paper distinguishes analytically between two prominent epistemological meta-narratives in contemporary urban studies and multiple ontological narratives in a given city-in this case Belfast. The first meta-narrative represents cities as sites of deepening coercion, violence and inequality and the second sees them as engines of new forms of transnational capitalism. Both are marked by the strategy of specifying 'exemplar' or 'paradigm' cities. The core of the paper addresses how these two meta-narratives map onto and interact with, three contemporary ontological narratives of urban regeneration in Belfast. We conceive of narratives-epistemological and ontological-as analytical tools and objects of analysis but also as tools for social action for competing political and economic interests and coalitions. While in the urban studies literature Belfast is typically studied as an exemplar 'conflict city', it is now being promoted as a 'new capitalist city'. In the context of post-Agreement Belfast, we explore not only the 'pull' of exemplar narratives but also resistances to them that are linked to multiple and hybrid senses of place in the city. We conclude that any significant move beyond the exigencies of rampant commodification or recurring inter-communal antagonism must firstly, encourage new forms of grassroots place-making and, secondly, reform of Belfast's (and Northern Ireland's) fragmented governance structures. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Economic dispatch (ED) problems often exhibit non-linear, non-convex characteristics due to the valve point effects. Further, various constraints and factors, such as prohibited operation zones, ramp rate limits and security constraints imposed by the generating units, and power loss in transmission make it even more challenging to obtain the global optimum using conventional mathematical methods. Meta-heuristic approaches are capable of solving non-linear, non-continuous and non-convex problems effectively as they impose no requirements on the optimization problems. However, most methods reported so far mainly focus on a specific type of ED problems, such as static or dynamic ED problems. This paper proposes a hybrid harmony search with arithmetic crossover operation, namely ACHS, for solving five different types of ED problems, including static ED with valve point effects, ED with prohibited operating zones, ED considering multiple fuel cells, combined heat and power ED, and dynamic ED. In this proposed ACHS, the global best information and arithmetic crossover are used to update the newly generated solution and speed up the convergence, which contributes to the algorithm exploitation capability. To balance the exploitation and exploration capabilities, the opposition based learning (OBL) strategy is employed to enhance the diversity of solutions. Further, four commonly used crossover operators are also investigated, and the arithmetic crossover shows its efficiency than the others when they are incorporated into HS. To make a comprehensive study on its scalability, ACHS is first tested on a group of benchmark functions with a 100 dimensions and compared with several state-of-the-art methods. Then it is used to solve seven different ED cases and compared with the results reported in literatures. All the results confirm the superiority of the ACHS for different optimization problems.
Resumo:
We consider the problem of linking web search queries to entities from a knowledge base such as Wikipedia. Such linking enables converting a user’s web search session to a footprint in the knowledge base that could be used to enrich the user profile. Traditional methods for entity linking have been directed towards finding entity mentions in text documents such as news reports, each of which are possibly linked to multiple entities enabling the usage of measures like entity set coherence. Since web search queries are very small text fragments, such criteria that rely on existence of a multitude of mentions do not work too well on them. We propose a three-phase method for linking web search queries to wikipedia entities. The first phase does IR-style scoring of entities against the search query to narrow down to a subset of entities that are expanded using hyperlink information in the second phase to a larger set. Lastly, we use a graph traversal approach to identify the top entities to link the query to. Through an empirical evaluation on real-world web search queries, we illustrate that our methods significantly enhance the linking accuracy over state-of-the-art methods.
Resumo:
An experimental study aimed at assessing the influence of redundancy and neutrality on the performance of an (1+1)-ES evolution strategy modeled using Markov chains and applied to NK fitness landscapes is presented. For the study, two families of redundant binary representations, one non-neutral family which is based on linear transformations and that allows the phenotypic neighborhoods to be designed in a simple and effective way, and the neutral family based on the mathematical formulation of error control codes are used. The results indicate whether redundancy or neutrality affects more strongly the behavior of the algorithm used.
Resumo:
Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Constrained nonlinear optimization problems are usually solved using penalty or barrier methods combined with unconstrained optimization methods. Another alternative used to solve constrained nonlinear optimization problems is the lters method. Filters method, introduced by Fletcher and Ley er in 2002, have been widely used in several areas of constrained nonlinear optimization. These methods treat optimization problem as bi-objective attempts to minimize the objective function and a continuous function that aggregates the constraint violation functions. Audet and Dennis have presented the rst lters method for derivative-free nonlinear programming, based on pattern search methods. Motivated by this work we have de- veloped a new direct search method, based on simplex methods, for general constrained optimization, that combines the features of the simplex method and lters method. This work presents a new variant of these methods which combines the lters method with other direct search methods and are proposed some alternatives to aggregate the constraint violation functions.
Resumo:
Despite the rapid change in today's business environment there are relatively few studies about corporate renewal. This study aims for its part at filling that research gap by studying the concepts of strategy, corporate renewal, innovation and corporate venturing. Its purpose is to enhance our understanding of how established companies operating in dynamic and global environment can benefit from their corporate venturing activities. The theoretical part approaches the research problem in corporate and venture levels. Firstly, it focuses on mapping the determinants of strategy and suggests using industry, location, resources, knowledge, structure and culture, market, technology and business model to assess the environment and using these determinants to optimize speed and magnitude of change.Secondly, it concludes that the choice of innovation strategy is dependent on the type and dimensions of innovation and suggests assessing market, technology, business model as well as novelty and complexity related to each of them for choosing an optimal context for developing innovations further. Thirdly, it directsattention on processes through which corporate renewal takes place. On corporate level these processes are identified as strategy formulation, strategy formation and strategy implementation. On the venture level the renewal processes are identified as learning, leveraging and nesting. The theoretical contribution of this study, the framework of strategic corporate venturing, joins corporate and venture level management issues together and concludes that strategy processes and linking processes are the mechanism through which continuous corporate renewaltakes place. The framework of strategic corporate venturing proposed by this study is a new way to illustrate the role of corporate venturing as a purposefullybuilt, different view of a company's business environment. The empirical part extended the framework by enhancing our understanding of the link between corporate renewal and corporate venturing in its real life environment in three Finnish companies: Metso, Nokia and TeliaSonera. Characterizing companies' environmentwith the determinants of strategy identified in this study provided a structured way to analyze their competitive position and renewal challenges that they arefacing. More importantly the case studies confirmed that a link between corporate renewal and corporate venturing exists and found out that the link is not as straight forward as indicated by the theory. Furthermore, the case studies enhanced the framework by indicating a sequence according to which the processes work. Firstly, the induced strategy processes strategy formulation and strategy implementation set the scene for corporate venturing context and management processes and leave strategy formation for the venture. Only after that can strategies formed by ventures come back to the corporate level - and if found viable in the corporate level be formalized through formulation and implementation. With the help of the framework of strategic corporate venturing the link between corporaterenewal and corporate venturing can be found and managed. The suggested response to the continuous need for change is continuous renewal i.e. institutionalizing corporate renewal in the strategy processes of the company. As far as benefiting from venturing is concerned the answer lies in deliberately managing venturing in a context different to the mainstream businesses and establishing efficientlinking processes to exploit the renewal potential of individual ventures.
Resumo:
In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID⁺. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.
Resumo:
In this paper, we present a P2P-based database sharing system that provides information sharing capabilities through keyword-based search techniques. Our system requires neither a global schema nor schema mappings between different databases, and our keyword-based search algorithms are robust in the presence of frequent changes in the content and membership of peers. To facilitate data integration, we introduce keyword join operator to combine partial answers containing different keywords into complete answers. We also present an efficient algorithm that optimize the keyword join operations for partial answer integration. Our experimental study on both real and synthetic datasets demonstrates the effectiveness of our algorithms, and the efficiency of the proposed query processing strategies.
Resumo:
When publishing information on the web, one expects it to reach all the people that could be interested in. This is mainly achieved with general purpose indexing and search engines like Google which is the most used today. In the particular case of geographic information (GI) domain, exposing content to mainstream search engines is a complex task that needs specific actions. In many occasions it is convenient to provide a web site with a specially tailored search engine. Such is the case for on-line dictionaries (wikipedia, wordreference), stores (amazon, ebay), and generally all those holding thematic databases. Due to proliferation of these engines, A9.com proposed a standard interface called OpenSearch, used by modern web browsers to manage custom search engines. Geographic information can also benefit from the use of specific search engines. We can distinguish between two main approaches in GI retrieval information efforts: Classical OGC standardization on one hand (CSW, WFS filters), which are very complex for the mainstream user, and on the other hand the neogeographer’s approach, usually in the form of specific APIs lacking a common query interface and standard geographic formats. A draft ‘geo’ extension for OpenSearch has been proposed. It adds geographic filtering for queries and recommends a set of simple standard response geographic formats, such as KML, Atom and GeoRSS. This proposal enables standardization while keeping simplicity, thus covering a wide range of use cases, in both OGC and the neogeography paradigms. In this article we will analyze the OpenSearch geo extension in detail and its use cases, demonstrating its applicability to both the SDI and the geoweb. Open source implementations will be presented as well
Resumo:
Purpose - The purpose of this paper is to identify the most popular techniques used to rank a web page highly in Google. Design/methodology/approach - The paper presents the results of a study into 50 highly optimized web pages that were created as part of a Search Engine Optimization competition. The study focuses on the most popular techniques that were used to rank highest in this competition, and includes an analysis on the use of PageRank, number of pages, number of in-links, domain age and the use of third party sites such as directories and social bookmarking sites. A separate study was made into 50 non-optimized web pages for comparison. Findings - The paper provides insight into the techniques that successful Search Engine Optimizers use to ensure a page ranks highly in Google. Recognizes the importance of PageRank and links as well as directories and social bookmarking sites. Research limitations/implications - Only the top 50 web sites for a specific query were analyzed. Analysing more web sites and comparing with similar studies in different competition would provide more concrete results. Practical implications - The paper offers a revealing insight into the techniques used by industry experts to rank highly in Google, and the success or other-wise of those techniques. Originality/value - This paper fulfils an identified need for web sites and e-commerce sites keen to attract a wider web audience.
Resumo:
An information processing paradigm in the brain is proposed, instantiated in an artificial neural network using biologically motivated temporal encoding. The network will locate within the external world stimulus, the target memory, defined by a specific pattern of micro-features. The proposed network is robust and efficient. Akin in operation to the swarm intelligence paradigm, stochastic diffusion search, it will find the best-fit to the memory with linear time complexity. information multiplexing enables neurons to process knowledge as 'tokens' rather than 'types'. The network illustrates possible emergence of cognitive processing from low level interactions such as memory retrieval based on partial matching. (C) 2007 Elsevier B.V. All rights reserved.