941 resultados para profit forecasts
Resumo:
The modeling technique is simple, useful and practical to calculate optimum nutrient density to maximize profit margins, using nonlinear programming by predictive broiler performance. To demonstrate the influence of the broiler price could interact with nutrient density, the experiment aimed to define the quadratic equations for consumption and weight gain, based on modeling, to be applied to nonlinear programming, according to sex (male and female) in the starter (1 to 21 days), grower (22 to 42 days) and finisher phases (43 to 56 days). The experimental design was a randomized, totaling 6 treatments [energy levels of 2800, 2900, 3000, 3100, 3200 and 3300kcal AME/kg with constant nutrient : AME (Apparent Metabolizable Energy)] with 4 replicates and 10 birds per plot, using the program free download PPFR Excel workbook for feed formulation (http://www.foa.unesp.br/downloads/file_detalhes.asp?CatCod=4&SubCatCod=138&FileCod=1677). Data from this trial confirmed that there was a significant relationship between feed intake and total energy consumption of the diet, in which feed intake was increased or decreased simply to keep the amount of energy, with a constant rate of nutrient : AME. Therefore, the data support that if the essential dietary nutrients are kept in proportion to the energy density of the diet, according to the appropriate requirements (male / female) of broilers, the weight and feed conversion are significantly (P<0.05) favored by increasing the energy density of the diet. Thus, it enables the application of models for maximum profit (nonlinear formulation), to estimate the proportion of weight gain most appropriate according to the price paid by the market.
Resumo:
This paper sets forth a Neo-Kaleckian model of capacity utilization and growth with distribution featuring a profit-sharing arrangement. While a given proportion of firms compensate workers with only a base wage, the remaining proportion do so with a base wage and a share of profits. Consistent with the empirical evidence, workers hired by profit-sharing firms have a higher productivity than their counterparts in base-wage firms. While a higher profit-sharing coefficient raises capacity utilization and growth irrespective of the distribution of compensation strategies across firms, a higher frequency of profit-sharing firms does likewise only if the profit-sharing coefficient is sufficiently high.
Resumo:
The cosmological constant Λ seems to be a not satisfactory explanation of the late-time accelerated expansion of the Universe, for which a number of experimental evidences exist; therefore, it has become necessary in the last years to consider alternative models of dark energy, meant as cause of the accelerated expansion. In the study of dark energy models, it is important to understand which quantities can be determined starting from observational data, without assuming any hypothesis on the cosmological model; such quantities have been determined in Amendola, Kunz et al., 2012. In the same paper it has been further shown that it is possible to estabilish a relation between the model-independent parameters and the anisotropic stress η, which can be also expressed as a combination of the functions appearing in the most general Lagrangian for the scalar-tensor theories, the Horndeski Lagrangian. In the present thesis, the Fisher matrix formalism is used to perform a forecast on the constraints that will be possible to make on the anisotropic stress η in the future, starting from the estimated uncertainties for the galaxy clustering and weak lensing measurements which will be performed by the European Space Agency Euclid mission, to be launched in 2020. Further, constraints coming from supernovae-Ia observations are considered. The forecast is performed for two cases in which (a) η is considered as depending from redshift only and (b) η is constant and equal to one, as in the ΛCDM model.
Resumo:
Le Associazioni Non Profit giocano un ruolo sempre più rilevante nella vita dei cittadini e rappresentano un'importante realtà produttiva del nostro paese; molto spesso però risulta difficile trovare informazioni relative ad eventi, attività o sull'esistenza stessa di queste associazioni. Per venire in contro alle esigenze dei cittadini molte Regioni e Province mettono a disposizione degli elenchi in cui sono raccolte le informazioni relative alle varie organizzazioni che operano sul territorio. Questi elenchi però, presentano spesso grossi problemi, sia per quanto riguarda la correttezza dei dati, sia per i formati utilizzati per la pubblicazione. Questi fattori hanno portato all'idea e alla necessità di realizzare un sistema per raccogliere, sistematizzare e rendere fruibili le informazioni sulle Associazioni Non Profit presenti sul territorio, in modo che questi dati possano essere utilizzati liberamente da chiunque per scopi diversi. Il presente lavoro si pone quindi due obiettivi principali: il primo consiste nell'implementazione di un tool in grado di recuperare le informazioni sulle Associazioni Non Profit sfruttando i loro Siti Web; questo avviene per mezzo dell'utilizzo di tecniche di Web Crawling e Web Scraping. Il secondo obiettivo consiste nel pubblicare le informazioni raccolte, secondo dei modelli che ne permettano un uso libero e non vincolato; per la pubblicazione e la strutturazione dei dati è stato utilizzato un modello basato sui principi dei linked open data.
Resumo:
This work contributes to the almost nonexistent literature on the profit rate of the financial sector. It updates the single study to include financial variables to cover the past decade, compares this profit rate to the (almost unpublished) Weisskopf and NIPA financial profit rates, compares the financial and nonfinancial sector rates, and details the procedure to construct the profit rate in the financial sector including relevant financial variables which capitalists consider to make profit-rate decisions. JEL Classification: B50, E11
Resumo:
BACKGROUND: Sedation is a cornerstone in the premedication for percutaneous coronary intervention (PCI). Benzodiazepines and opioids are frequently used. Previous results suggest that opioids mimic the adaptation to ischemia during repeated balloon inflations and may provide direct myocardial protection in addition to their sedative effect. However, no comparative data exist. METHODS: We conducted a prospective, randomized, controlled, single-blind trial comparing diazepam and fentanyl in 276 patients undergoing elective PCI. Patients were randomized to either diazepam 5 mg sublingually or fentanyl 0.05 mg or 0.1 mg intravenously at least 5 minutes prior to the first balloon inflation. The primary end-point was the postprocedural elevation of myocardial markers of necrosis defined as an elevation of cardiac troponin T > or = 0.01 ng/ml. RESULTS: The three groups had similar baseline clinical, angiographic, and procedural characteristics, with no significant differences in lesion morphology, procedural complexity, or adjunctive medical treatment. No significant variation in the hemodynamic response to the study drugs was observed in the three groups. The rate of postprocedural troponin T elevation was 28% in the diazepam group, 20% in the fentanyl 0.05 mg group, and 30% in the fentanyl 0.1 mg group (P = 0.26). Rates of postprocedural myocardial infarction were 3%, 2%, and 2%, respectively (P = 0.84), with one case of in-hospital death in the diazepam group and no urgent TVR in the whole study population. CONCLUSION: Although providing a well-tolerated alternative to diazepam for sedation during PCI, fentanyl did not provide additional cardioprotection assessed through the postinterventional elevation of cardiac troponin T during elective coronary intervention.
Resumo:
The past decade has brought significant advancements in seasonal climate forecasting. However, water resources decision support and management continues to be based almost entirely on historical observations and does not take advantage of climate forecasts. This study builds on previous work that conditioned streamflow ensemble forecasts on observable climate indicators, such as the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) for use in a decision support model for the Highland Lakes multi-reservoir system in central Texas operated by the Lower Colorado River Authority (LCRA). In the current study, seasonal soil moisture is explored as a climate indicator and predictor of annual streamflow for the LCRA region. The main purpose of this study is to evaluate the correlation of fractional soil moisture with streamflow using the 1950-2000 Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set over the LCRA region. Correlations were determined by examining different annual and seasonal combinations of VIC modeled fractional soil moisture and observed streamflow. The applicability of the VIC Retrospective Land Surface Data Set as a data source for this study is tested along with establishing and analyzing patterns of climatology for the watershed study area using the selected data source (VIC model) and historical data. Correlation results showed potential for the use of soil moisture as a predictor of streamflow over the LCRA region. This was evident by the good correlations found between seasonal soil moisture and seasonal streamflow during coincident seasons as well as between seasonal and annual soil moisture with annual streamflow during coincident years. With the findings of good correlation between seasonal soil moisture from the VIC Retrospective Land Surface Data Set with observed annual streamflow presented in this study, future research would evaluate the application of NOAA Climate Prediction Center (CPC) forecasts of soil moisture in predicting annual streamflow for use in the decision support model for the LCRA.
Resumo:
A great increase of private car ownership took place in China from 1980 to 2009 with the development of the economy. To explain the relationship between car ownership and economic and social changes, an ordinary least squares linear regression model is developed using car ownership per capita as the dependent variable with GDP, savings deposits and highway mileages per capita as the independent variables. The model is tested and corrected for econometric problems such as spurious correlation and cointegration. Finally, the regression model is used to project oil consumption by the Chinese transportation sector through 2015. The result shows that about 2.0 million barrels of oil will be consumed by private cars in conservative scenario, and about 2.6 million barrels of oil per day in high case scenario in 2015. Both of them are much higher than the consumption level of 2009, which is 1.9 million barrels per day. It also shows that the annual growth rate of oil demand by transportation is 2.7% - 3.1% per year in the conservative scenario, and 6.9% - 7.3% per year in the high case forecast scenario from 2010 to 2015. As a result, actions like increasing oil efficiency need to be taken to deal with challenges of the increasing demand for oil.
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979-2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.