871 resultados para predictive maintenance
Resumo:
Background—Mutations of the APC gene cause familial adenomatous polyposis (FAP), a hereditary colorectal cancer predisposition syndrome.Aims—To conduct a cost comparison analysis of predictive genetic testing versus conventional clinical screening for individuals at risk of inheriting FAP, using the perspective of a third party payer. Methods—All direct health care costs for both screening strategies were measured according to time and motion, and the expected costs evaluated using a decision analysis model.Results—The baseline analysis predicted that screening a prototype FAP family would cost $4975/£3109 by molecular testingand $8031/£5019 by clinical screening strategy, when family members were monitored with the same frequency of clinical surveillance (every two to three years). Sensitivity analyses revealed that the genetic testing approach is cost saving for key variables including the kindred size, the age of screening onset, and the cost of mutation identification in a proband. However, if the APC mutation carriers were monitored at an increased (annual) frequency, the cost of the genetic screening strategy increased to $7483/ £4677 and was especially sensitive to variability in age of onset of screening, family size, and cost of genetic testing of at risk relatives. Conclusions—In FAP kindreds, a predictive genetic testing strategy costs less than conventional clinical screening, provided that the frequency of surveillance is identical using either strategy. An additional significant benefit is the elimination of unnecessary colonic examinations for those family members found to be noncarriers.
Resumo:
Perfect or even mediocre weather predictions over a long period are almost impossible because of the ultimate growth of a small initial error into a significant one. Even though the sensitivity of initial conditions limits the predictability in chaotic systems, an ensemble of prediction from different possible initial conditions and also a prediction algorithm capable of resolving the fine structure of the chaotic attractor can reduce the prediction uncertainty to some extent. All of the traditional chaotic prediction methods in hydrology are based on single optimum initial condition local models which can model the sudden divergence of the trajectories with different local functions. Conceptually, global models are ineffective in modeling the highly unstable structure of the chaotic attractor. This paper focuses on an ensemble prediction approach by reconstructing the phase space using different combinations of chaotic parameters, i.e., embedding dimension and delay time to quantify the uncertainty in initial conditions. The ensemble approach is implemented through a local learning wavelet network model with a global feed-forward neural network structure for the phase space prediction of chaotic streamflow series. Quantification of uncertainties in future predictions are done by creating an ensemble of predictions with wavelet network using a range of plausible embedding dimensions and delay times. The ensemble approach is proved to be 50% more efficient than the single prediction for both local approximation and wavelet network approaches. The wavelet network approach has proved to be 30%-50% more superior to the local approximation approach. Compared to the traditional local approximation approach with single initial condition, the total predictive uncertainty in the streamflow is reduced when modeled with ensemble wavelet networks for different lead times. Localization property of wavelets, utilizing different dilation and translation parameters, helps in capturing most of the statistical properties of the observed data. The need for taking into account all plausible initial conditions and also bringing together the characteristics of both local and global approaches to model the unstable yet ordered chaotic attractor of a hydrologic series is clearly demonstrated.
Resumo:
A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.
Resumo:
For a homing interceptor, suitable initial condition must be achieved by mid course guidance scheme for its maximum effectiveness. To achieve desired end goal of any mid course guidance scheme, two point boundary value problem must be solved online with all realistic constrain. A Newly developed computationally efficient technique named as MPSP (Model Predictive Static Programming) is utilized in this paper for obtaining suboptimal solution of optimal mid course guidance. Time to go uncertainty is avoided in this formulation by making use of desired position where midcourse guidance terminate and terminal guidance takes over. A suitable approach angle towards desired point also can be specified in this guidance law formulation. This feature makes this law particularly attractive because warhead effectiveness issue can be indirectly solved in mid course phase.
Resumo:
A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.
Resumo:
A customer reported problem (or Trouble Ticket) in software maintenance is typically solved by one or more maintenance engineers. The decision of allocating the ticket to one or more engineers is generally taken by the lead, based on customer delivery deadlines and a guided complexity assessment from each maintenance engineer. The key challenge in such a scenario is two folds, un-truthful (hiked up) elicitation of ticket complexity by each engineer to the lead and the decision of allocating the ticket to a group of engineers who will solve the ticket with in customer deadline. The decision of allocation should ensure Individual and Coalitional Rationality along with Coalitional Stability. In this paper we use game theory to examine the issue of truthful elicitation of ticket complexities by engineers for solving ticket as a group given a specific customer delivery deadline. We formulate this problem as strategic form game and propose two mechanisms, (1) Division of Labor (DOL) and (2) Extended Second Price (ESP). In the proposed mechanisms we show that truth telling by each engineer constitutes a Dominant Strategy Nash Equilibrium of the underlying game. Also we analyze the existence of Individual Rationality (IR) and Coalitional Rationality (CR) properties to motivate voluntary and group participation. We use Core, solution concept from co-operative game theory to analyze the stability of the proposed group based on the allocation and payments.
Resumo:
Designing and optimizing high performance microprocessors is an increasingly difficult task due to the size and complexity of the processor design space, high cost of detailed simulation and several constraints that a processor design must satisfy. In this paper, we propose the use of empirical non-linear modeling techniques to assist processor architects in making design decisions and resolving complex trade-offs. We propose a procedure for building accurate non-linear models that consists of the following steps: (i) selection of a small set of representative design points spread across processor design space using latin hypercube sampling, (ii) obtaining performance measures at the selected design points using detailed simulation, (iii) building non-linear models for performance using the function approximation capabilities of radial basis function networks, and (iv) validating the models using an independently and randomly generated set of design points. We evaluate our model building procedure by constructing non-linear performance models for programs from the SPEC CPU2000 benchmark suite with a microarchitectural design space that consists of 9 key parameters. Our results show that the models, built using a relatively small number of simulations, achieve high prediction accuracy (only 2.8% error in CPI estimates on average) across a large processor design space. Our models can potentially replace detailed simulation for common tasks such as the analysis of key microarchitectural trends or searches for optimal processor design points.
Resumo:
Predictive distribution modelling of Berberis aristata DC, a rare threatened plant with high medicinal values has been done with an aim to understand its potential distribution zones in Indian Himalayan region. Bioclimatic and topographic variables were used to develop the distribution model with the help of three different algorithms viz. GeneticAlgorithm for Rule-set Production (GARP), Bioclim and Maximum entroys(MaxEnt). Maximum entropy has predicted wider potential distribution (10.36%) compared to GARP (4.63%) and Bioclim (2.44%). Validation confirms that these outputs are comparable to the present distribution pattern of the B. atistata. This exercise highlights that this species favours Western Himalaya. However, GARP and MaxEnt's prediction of Eastern Himalayan states (i.e. Arunachal Pradesh, Nagaland and Manipur) are also identified as potential occurrence places require further exploration.