953 resultados para power system reliability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliability of power supply is related, among other factors, to the control and protection devices allocation in feeders of distribution systems. In this way, optimized allocation of sectionalizing switches and protection devices in strategic points of distribution circuits, improves the quality of power supply and the system reliability indices. In this work, it is presented a mixed integer non-linear programming (MINLP) model, with real and binary variables, for the sectionalizing switches and protection devices allocation problem, in strategic sectors, aimed at improving reliability indices, increasing the utilities billing and fulfilling exigencies of regulatory agencies for the power supply. Optimized allocation of protection devices and switches for restoration, allows that those faulted sectors of the system can be isolated and repaired, re-managing loads of the analyzed feeder into the set of neighbor feeders. Proposed solution technique is a Genetic Algorithm (GA) developed exploiting the physical characteristics of the problem. Results obtained through simulations for a real-life circuit, are presented. © 2004 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology to solve the transmission network expansion planning problem (TNEP) considering reliability and uncertainty in the demand. The proposed methodology provides an optimal expansion plan that allows the power system to operate adequately with an acceptable level of reliability and in an enviroment with uncertainness. The reliability criterion limits the expected value of the reliability index (LOLE - Loss Of Load Expectation) of the expanded system. The reliability is evaluated for the transmission system using an analytical technique based in enumeration. The mathematical model is solved, in a efficient way, using a specialized genetic algorithm of Chu-Beasley modified. Detailed results from an illustrative example are presented and discussed. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an evermore competitive environment, power distribution companies need to continuously monitor and improve the reliability indices of their systems. The network reconfiguration (NR) of a distribution system is a technique that well adapts to this new deregulated environment for it allows improvement of system reliability indices without the onus involved in procuring new equipment. This paper presents a reliability-based NR methodology that uses metaheuristic techniques to search for the optimal network configuration. Three metaheuristics, i.e. Tabu Search, Evolution Strategy, and Differential Evolution, are tested using a Brazilian distribution network and the results are discussed. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems as voltage increase at the end of a feeder, demand supply unbalance in a fault condition, power quality decline, increase of power losses, and reduction of reliability levels may occur if Distributed Generators (DGs) are not properly allocated. For this reason, researchers have been employed several solution techniques to solve the problem of optimal allocation of DGs. This work is focused on the ancillary service of reactive power support provided by DGs. The main objective is to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). The LOC will be determined for different allocation alternatives of DGs as a result of a multi-objective optimization process, aiming the minimization of losses in the lines of the system and costs of active power generation from DGs, and the maximization of the static voltage stability margin of the system. The effectiveness of the proposed methodology in improving the goals outlined was demonstrated using the IEEE 34 bus distribution test feeder with two DGs cosidered to be allocated. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, to solve the reconfiguration problem of radial distribution systems a scatter search, which is a metaheuristic-based algorithm, is proposed. In the codification process of this algorithm a structure called node-depth representation is used. It then, via the operators and from the electrical power system point of view, results finding only radial topologies. In order to show the effectiveness, usefulness, and the efficiency of the proposed method, a commonly used test system, 135-bus, and a practical system, a part of Sao Paulo state's distribution network, 7052 bus, are conducted. Results confirm the efficiency of the proposed algorithm that can find high quality solutions satisfying all the physical and operational constraints of the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an evolutionary computing strategy to solve the problem of fault indicator (FI) placement in primary distribution feeders. More specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions on the main feeder of a real-life distribution system. Thus, the problem is modeled as one of optimization, aimed at improving the distribution reliability indices, while, at the same time, finding the least expensive solution. Based on actual data, the results confirm the efficiency of the GA approach to the FI placement problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A power transformer needs continuous monitoring and fast protection as it is a very expensive piece of equipment and an essential element in an electrical power system. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can mislead the conventional protection affecting the power system stability negatively. This study proposes the development of a new algorithm to improve the protection performance by using fuzzy logic, artificial neural networks and genetic algorithms. An electrical power system was modelled using Alternative Transients Program software to obtain the operational conditions and fault situations needed to test the algorithm developed, as well as a commercial differential relay. Results show improved reliability, as well as a fast response of the proposed technique when compared with conventional ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in situ study evaluated the discriminatory power and reliability of methods of dental plaque quantification and the relationship between visual indices (VI) and fluorescence camera (FC) to detect plaque.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind energy installations are increasing in power systems worldwide and wind generation capacity tends to be located some distance from load centers. A conflict may arise at times of high wind generation when it becomes necessary to curtail wind energy in order to maintain conventional generators on-line for the provision of voltage control support at load centers. Using the island of Ireland as a case study and presenting commercially available reactive power support devices as possible solutions to the voltage control problems in urban areas, this paper explores the reduction in total generation costs resulting from the relaxation of the operational constraints requiring conventional generators to be kept on-line near load centers for reactive power support. The paper shows that by 2020 there will be possible savings of 87€m per annum and a reduction in wind curtailment of more than a percentage point if measures are taken to relax these constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.

(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.

(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.