989 resultados para poplars (Populus spp.)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmful algal blooms (HAB) occur worldwide and cause health problems and economic damage to fisheries and tourism. Monitoring for toxic algae is therefore essential but is based primarily on light microscopy, which is time consuming and can be limited by insufficient morphological characters such that more time is needed to examine critical features with electron microscopy. Monitoring with molecular tools is done in only a few places world-wide. EU FP7 MIDTAL (Microarray Detection of Toxic Algae) used SSU and LSU rRNA genes as targets on microarrays to identify toxic species. In order to comply with current monitoring requirements to report cell numbers as the relevant threshold measurement to trigger closure of fisheries, it was necessary to calibrate our microarray to convert the hybridisation signal obtained to cell numbers. Calibration curves for two species of Pseudo-nitzschia for use with the MIDTAL microarray are presented to obtain cell numbers following hybridisation. It complements work presented by Barra et al. (2012b. Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1330-1v) for two other Pseudo-nitzschia spp., Dittami and Edvardsen (2012a. J. Phycol. 48, 1050) for Pseudochatonella, Blanco et al. (2013. Harmful Algae 24, 80) for Heterosigma, McCoy et al. (2013. FEMS. doi: 10.1111/1574-6941.12277) for Prymnesium spp., Karlodinium veneficum, and cf. Chatonella spp. and Taylor et al. (2014. Harmful Algae, in press) for Alexandrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reported incidence of colonization of oropharyngeal medical devices with Candida spp. has increased in recent years, although few studies that have systematically examined the adherence of yeast cells to such biomaterials, the primary step in the process of colonization. This study, therefore, examined the effects of oropharyngeal atmospheric conditions (5% v/v carbon dioxide) and the presence of a salivary conditioning film on both the surface properties and adherence of Candida albicans, Candida krusei and Candida tropicalis to PVC and silicone. Furthermore, the effects of the salivary conditioning film on the surface properties of these biomaterials are reported. Growth of the three Candida spp. in an atmosphere containing 5% v/v CO2 significantly increased their cell surface hydrophobicity and reduced the zeta potential of C. albicans and C. krusei yet increased the zeta potential of C. tropicalis (p < 0.05). Furthermore, growth in 5% v/v CO2 decreased the adherence of C. tropicalis and C. albicans to both PVC and silicone, however, increased adherence of C. krusei (p < 0.05). Pre-treatment of the microorganisms with pooled human saliva significantly decreased their cell surface hydrophobicity and increased their adherence to either biomaterial in comparison to yeast cells that had been pre-treated with PBS (p < 0.05). Saliva treatment of the microorganisms had no consistent effect on microbial zeta potential. Interestingly, adherence of the three, saliva-treated Candida spp. to saliva-treated silicone and PVC was significantly lower than whenever the microorganisms and biomaterials had been treated with PBS (p < 0.05). Treatment of silicone and PVC with saliva significantly altered the surface properties, notably reducing both the advancing and receding contact angles and, additionally, the microrugosity. These effects may contribute to the decreased adherence of saliva-treated microorganisms to these biomaterials. In conclusion, this study has demonstrated the effects of physiological conditions within the oral cavity on the adherence of selected Candida spp. to biomaterials employed as oropharyngeal medical devices. In particular, this study has ominously shown that these materials act as substrates for yeast colonization, highlighting the need for advancements in biomaterial design. Furthermore, it is important that physiological conditions should be employed whenever biocompatibility of oropharyngeal biomaterials is under investigation. © 2001 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Populations of Gammarus duebeni celticus, previously the only amphipod species resident in the rivers of the Lough Neagh catchment, N. Ireland, have been subjected to invasion by G. pulex from the British mainland. Numerous previous studies have investigated the potential behavioural mechanisms, principally differential mutual predation, underlying the replacement of G. d. celticus by G. pulex in Irish waters, and the mutually exclusive distributions of these species in Britain and mainland Europe. However, the relative degree of influence of abiotic versus biotic factors in structuring these amphipod communities remains unresolved. This study used principal component analysis (PCA) to distinguish physico-chemical parameters that have significant roles in determining the current distribution of G. pulex relative to G. d. celticus in L. Neagh rivers. We show that the original domination of rivers by the native G. d, celticus has changed radically, with many sites in several rivers containing either both species or only G. pulex. G. pulex was more abundant than the G. d. celticus in sites with low dissolved oxygen levels. This was reflected in the macroinvertebrate assemblages associated with G. pulex in these sites, which tended to be those tolerant of low biological water quality. The present study thus emphasizes the importance of the habitat template, particularly water quality, for Gammarus spp. interactions. If rivers become increasingly stressed by organic pollution, it is probable the range expansion of G. pulex will continue. Because these two species are not ecological equivalents, the outcomes of G. pulex incursions into G. d. celticus sites may ultimately depend on the prevailing physico-chemical regimes in each site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seasonal activity of Leisler's bat Nyctalus leisleri and pipistrelle bats Pipistrellus spp. with respect to minimum bat numbers and habitat use were investigated in County Down, Northern Ireland using a driven transect from April 1998 to October 1998. Data were collected in lowland farmland near Belfast, Northern Ireland using two BatBox III bat detectors tuned to detect both species and species groups simultaneously. The number of bats/km increased during April, May and June, peaking in July and tailed off after this period. The main peak in July is assumed to reflect the occurrence of newly volant young. An increase in the number of pipistrelle social calls during August and September probably represented mating activity. Bat activity correlated with temperature in both N. leisleri and Pipistrellus spp., although bat numbers were independent of temperature after the middle of June. There was significant variation in habitat use by pipistrelle bats along roads over the study period. Pipistrelle bats were observed in greater numbers in areas of tree-line, cut hedge (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Assessing the effects on communities of invasive species is often confounded by environmental factors. In Irish rivers, the introduced amphipod Gammarus pulex replaces the native G. duebeni celticus in lowland stretches. The two amphipods are associated with different macroinvertebrate communities, which may in part be the result of natural longitudinal physicochemical change. However, this hinders assessment of any direct community impacts of the invasive as compared with the native species. Here, we report on a fortuitous circumstance that allowed us to uncouple the community effects of Gammarus species from environmental differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polymerase chain reaction (PCR) based method was developed for the specific and sensitive diagnosis of the microsporidian parasite Nosema bombi in bumble bees (Bombus spp.). Four primer pairs, amplifying ribosomal RNA (rRNA) gene fragments, were tested on N. bombi and the related microsporidia Nosema apis and Nosema ceranae, both of which infect honey bees. Only primer pair Nbombi-SSU-Jf1/Jr1 could distinguish N. bombi (323 bp amplicon) from these other bee parasites. Primer pairs Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2 were then tested for their sensitivity with N. bombi spore concentrations from 107 down to 10 spores diluted in 100 mu l of either (i) water or (ii) host bumble bee homogenate to simulate natural N. bombi infection (equivalent to the DNA from 10(6) spores down to 1 spore per PCR). Though the N. bombi-specific primer pair Nbombi-SSU-Jf1/Jr1 was relatively insensitive, as few as 10 spores per extract (equivalent to 1 spore per PCR) were detectable using the N. bombi-non-specific primer pair ITS-f2/r2, which amplifies a short fragment of similar to 120 bp. Testing 99 bumble bees for N. bombi infection by light microscopy versus PCR diagnosis with the highly sensitive primer pair ITS-f2/r2 showed the latter to b more accurate. PCR diagnosis of N. bombi using a combination of two primer pairs (Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2) provides increased specificity, sensitivity, and detection of all developmental stages compared with light microscopy. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invading and native species often interact directly, such as by predation, producing patterns of exclusion and coexistence. Less direct factors, such as interactions with the broader abiotic and biotic environment, may also contribute to such patterns, but these have received less recognition. In Northern Ireland, the North American Gammarus tigrinus has invaded freshwaters populated with the native Gammarus duebeni celticus, with intraguild predation between the two implicated in their relative success. However, these species also engage in day and night